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Abstract—In semiconductor device simulations, the reliance on
empirical compact models, such as the Berkeley Short-channel
IGFET Model (BSIM) and neural compact models, introduces
approximations that may significantly diverge from actual physical
phenomena. Identifying and filtering out unphysical behaviors and
erroneous simulation outcomes is a challenging task, traditionally
requiring extensive expert involvement and incurring high costs.
In response, we introduce FuncAnoDe, a novel neural operator
for unsupervised functional anomaly detection in semiconductor
simulation datasets. FuncAnoDe is the first to offer deep learning-
based function-level anomaly detection without manual expert
intervention. Its function-level encoder-decoder architecture en-
ables applications across a diverse range of device parameters
and simulations, ensuring scalability and high accuracy in identi-
fying physically implausible parameter configurations. Our evalu-
ations were conducted through complex capacitance-voltage (C-V)
curve analysis, and FuncAnoDe demonstrated its effectiveness in
anomaly detection by achieving a 100.00% accuracy without re-
liance on manual labeling. FuncAnoDe provides a methodological
advancement that enhances the precision, reliability, and efficiency
of semiconductor design and simulation workflows.

Index Terms—Anomaly Detection, Deep Learning, Neural Op-
erator, Device Modeling

I. INTRODUCTION

In semiconductor device simulation, ensuring the validity of
models is crucial for advancing technology. The use of empiri-
cal compact models, such as the Berkeley Short-channel IGFET
Model (BSIM), and emerging neural compact models [18],
has become standard practice. These models have significantly
advanced semiconductor technology but rely on approximations
of physical phenomena. Consequently, discrepancies can arise
between the behaviors predicted by simulations and those
observed in real devices.

On the other hand, the application of large-scale training
techniques to device simulations is increasing. In [3], pre-
trained models utilizing meta-learning techniques are intro-
duced, while [12] explores the use of Generative Artificial Intel-
ligence (GenAl) for Monte Carlo simulations. Furthermore, [11]
introduces the first large-scale pre-trained foundation models for
I-V and C-V device modeling.

These advancements highlight the growing importance of
rigorous data validation processes. However, the current de-
pendence on expert manual inspections of training data is not
scalable and demands substantial resources, posing challenges
to ensure the robustness and reliability of simulation models.

In response to these challenges, we introduce FuncAnoDe, a
novel approach designed to automate and streamline the process
of anomaly detection in semiconductor device simulations.
FuncAnoDe leverages a function autoencoder (AE) [7] using
an attention operator [19] and perceiver-like architecture [5].
This approach enables the efficient identification of anomalies
through reconstruction loss metrics without requiring manual
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Fig. 1: Model Architecture: Function-encoder encodes func-
tion f into a latent vector u and Function-decoder decodes the
latent vector into the reconstructed function f
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labeling. To our knowledge, FuncAnoDe is the first neural
operator to apply unsupervised deep learning for anomaly
detection in semiconductor device simulations. Based on our
extensive experiments, it demonstrates 100% accuracy in de-
tecting anomalies across simulations of 32nm technology node
devices, while only pre-trained on larger-scale device data
without labels. This advancement demonstrates FuncAnoDe’s
potential to significantly improve the accuracy and reliability
of device models.

In summary, FuncAnoDe makes the following contributions:

o FuncAnoDe is the first neural operator to apply unsuper-
vised deep learning techniques for anomaly detection in
semiconductor device simulations.

o FuncAnoDe extends the AE to handle infinite-dimensional
functional data such as C-V curves for anomaly detection
in device simulations.

o FuncAnoDE achieves near-perfect accuracy in detecting
anomalies in unseen target technology devices.

II. FUNCANODE: FUNCTIONAL ANOMALY DETECTION

FuncAnoDe is an autoencoder architecture based on attention
neural operators [1]. Neural operators [6] are specialized neural
networks that learn mappings between two infinite-dimensional
function spaces. They possess a discretization invariance prop-
erty, guaranteeing the convergence to the true solution while al-
lowing evaluations over arbitrary geometries and discretization
sizes. This capability is particularly advantageous when deal-
ing with measurement data of varying resolutions. Addition-
ally, neural operators can generalize to irregular, non-uniform
meshes, making them practical for real-world measurement data
in arbitrary sequences.

Attention neural operators [1] rigorously extend attention [19]
to function spaces. In addition to the properties of neural
operators, attention neural operators enable the parallel pro-
cessing of data sequences over irregular grids and improve the
representation of complex interactions. The attention operator
takes a query ¢ € R%, key k € R%, and value v € R%,
and it can be divided to two types, namely cross-attention and
self-attention. Cross attention (CA) restricts the query g to be
one vector and key and value to be another, ie. £k = v. It
establishes a relationship between two data sequences. Given a
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Fig. 2: Examples of Each Data Type. (a) Original test dataset generated by human experts with BSIM. (b) Anomaly introduced
by human error with incorrect parameter input to BSIM. (c) Anomaly created by removing random frequencies from the original

dataset (a).

set of learnt latent vectors {u; })*, with u; € R% and an input
function sequence {(x;, f(x;))};=;, we define

CA(q = {ui} iy, b =v = {(z;, flz;)};2)) = {ui}ily, (D)

where u) represents learned latent vectors incorporating func-
tion sequence information. On the other hand, self-attention
(SA) uses the same data sequence for queries, keys, and values,
i.e. ¢ = k = v, and computes the interaction within the same
data sequence. Under the same assumptions as cross-attention,
we define

SAg=k=v={u}) = {uj}i, 2)

where v/ are improved latent vectors.

Motivated by [7], FuncAnoDe utilizes attention neural op-
erators. It initially employs cross-attention to learn the re-
lations between learnable latent vectors and input function
evaluations, using C-V simulation data of arbitrary data length.
Subsequently, multiple layers of self-attentions are applied over
the learned query points to further improve and compress the
information of function in these latent vectors. Finally, we
apply fully connected layers by concatenated query points for
evaluations with the latent vectors for reconstruction.

We train FuncAnoDe on normal datasets from simulations
such that

¢, 9" = argming , E[Dy 0 & o f — f], 3)

where f are device models randomly sampled from the dataset
and £,D are encoders and decoders respectively. Refer to
Figure 1 for the architecture of the function AE. After training,
the network is applied to a dataset consisting of both normal
and abnormal datasets, yielding reconstruction errors for each
data. Reconstruction errors are then sorted from smallest to
largest. Using Kernel Density Estimation (KDE) to estimate
the probability density function of the reconstruction errors,
along with Silverman’s rule of thumb [15], we automatically
determine an optimal threshold that distinguishes between low
and high reconstruction errors. Datasets with reconstruction
errors surpassing the threshold are classified as abnormal,
whereas those with errors below the threshold are categorized as
normal. We expect that the test abnormal dataset lies beyond the
learned data manifold, thus yielding high reconstruction errors.

III. RELATED WORKS

Anomaly detection using the reconstruction loss of AE is a
widely used technique. For instance, [24, 25] utilize augmen-
tation masks reconstructed using AE. [9] employs Long Short-
Term Memory Network to model time series inputs for recon-
struction. An energy model, which outputs low scores on trained

TABLE I: Hyperparameters used for training the networks.

Hyperparameters Values
Number of Latents (/Vy,) 256
Latent Dimension (d,,) 32
Learning Rate le-4
Batch Size 64
Epochs 3000
Optimizer Adam

data regimes, is also explored sx[22]. Generative models like
Generative Adversarial Networks or Diffusion Models are also
employed for reconstruction-based anomaly detection [13, 20].
However, these methods primarily focus on fixed grid images,
time series, or tabular data, whereas FuncAnoDe extends to
infinite-dimensional function spaces and is specifically designed
to detect anomalies in device data.

IV. EXPERIMENTS

We compared FuncAnoDe with conventional methods, in-
cluding Functional Principal Component Analysis (FPCA) [14],
as well as clustering techniques like K-means and Spectral
Clustering [10, 21]. Since clustering methods struggle to trans-
fer knowledge among different technology nodes, we directly
applied clustering to 32nm test datasets. In contrast, FPCA
and FuncAnoDe were trained across a broader spectrum of
technology scales, eliminating the necessity for training on test
data.

A. Training Details

Table I describes the hyperparameters used for training our
model. We explain in the following two crucial hyperparameters
introduced in Perceiver architecture [5, 7] that define the size
of the latent vector u:

o Number of Latents (/V,): This determines the number of

latent vectors to represent the function.

o Latent Dimension (d,): This specifies the dimension of

each latent vector.

We discover that these two hyperparameters are critical for
the model’s performance because they represent how much
function information is compressed in the latent space. They
were carefully selected using a grid search to ensure that the
architecture accurately captures the intricate features of our
device dataset while balancing computational complexity.

B. Datasets

We generated training and test datasets by SPICE simu-
lations [2, 16], utilizing previous technology nodes ranging
from 55nm to 180nm for training, and 32nm for testing. This
approach aligns with common practices, where simulation and
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Fig. 4: t-SNE plot of latent vectors from the dataset. High-
dimensional vectors are projected onto a 2D plot, preserving
their relative distances in the original high-dimensional space.

measurement datasets of previously developed technology node
devices are abundant.

For anomaly detection, our test dataset comprises three
distinct types. Firstly, we have regular simulations (refer to
Figure 2a), representing normal C-V curves. Secondly, we
incorporate simulated anomalies (refer to Figure 2b), where our
device experts manually induced failures in the BSIM model.
Lastly, we introduce augmented anomalies created by masking
high-frequency modes (refer to Figure 2c), aimed at diversifying
anomaly types. The diversity of test data allows us to evaluate
our anomaly detection method in various scenarios thoroughly.

V. RESULTS

In this section, we compare the results of FuncAnoDe
with those of our baseline models. Table II shows a perfor-
mance comparison among FPCA, K-means, spectral clustering,
and FuncAnoDe. Notably, FPCA yields suboptimal results in
anomaly detection. Unlike deep neural networks, which excel
in capturing intricate features, FPCA encounters difficulties in
anomaly detection due to significant variations in functions
sharing similar underlying physics. This variability hinders
FPCA’s ability to generalize across different types of func-
tion data, thereby restricting its effectiveness in identifying
anomalies. Furthermore, it requires a fixed grid as input, further
limiting its scope of usage.

Across all metrics (accuracy, recall, and precision), Fun-
cAnoDe achieves superior results compared to our baseline
methods. Notably, FuncAnoDe achieves 100% recall, indicating
its capability to detect anomalies effectively without false
negatives. Moreover, it outperforms baseline models by almost
double, highlighting its robustness.

To further assess its robustness, we introduced noise to
the test data. At 20dB noise level, FuncAnoDe’s performance
only experiences a moderate 3% drop on average metrics,

TABLE II: Comparison of Performance Metrics

Performance Metrics

Method

Accuracy Recall Precision
FPCA 10.00% 50.00% 11.25%
K-means Clustering 79.73% 49.50% 49.75%
Spectral Clustering 82.15% 50.00% 56.50%
FuncAnoDe 100.00%  100.00%  100.00 %
FuncAnoDe (w. noise 20dB) 98.69% 94.00% 98.75%

demonstrating its resilience in handling realistic data with noise
present. We find that under reasonable noise levels, the overall
perturbation on the test data has only minor impacts on the
reconstruction errors. Refer to Figure 5 for an example of the
noisy data.

Figure 3 illustrates the distribution of reconstruction errors,
with KDE to fit the probability density function. FuncAnoDe
automatically determines the threshold for decision-making,
simplifying its use for non-Al experts. Additionally, we observe
that FuncAnoDe appears to cluster certain types of anomalies.
While this aspect remains as future research, the potential for
clustering anomaly types suggests the algorithm could offer
enhanced insights for human inspection.

Figure 4 presents a 2D projected plot of latent vectors
of function inputs. Intermediate features in the network, as
highlighted by [4] and [17], play a critical role in detecting
anomalies. Hence, investigating it will open up future devel-
opment of the method. Despite being trained solely on device
curves from 180nm to 55nm, the network effectively clusters
anomalies from normal samples based on their latent vectors.
This proves that FuncAnoDe can successfully learn meaningful
latent features.

VI. LIMITATIONS AND FUTURE WORK

There are a few limitations of the work. First, reconstruction
errors could be regarded as 1D projections from function
space. Due to the disparity of dimension size between infinite-
dimensional function space and 1D real space, it can only
compress a limited amount of function information. Second, we
can think of reconstruction loss as an energy-based model [23].
Using the energy-based model framework, we can improve
our model to more efficiently separate negative samples from
positive ones. Third, while the model can distinguish anomalies
from normal datasets, it cannot perform clustering of multiple
anomaly types, if anomaly types increase.

As a result, it becomes important to extend FuncAnode in
the future to support multiple metrics other than reconstruction
errors to have a high-dimensional projection measuring the sim-
ilarity between the original function and reconstructed functions
such that one can perform clustering methods for distinguishing
diverse types of anomalies. Moreover, we could also extend
our work to an energy-based operator by using function-level
Langevin dynamics [8] to sample negative functions considered
anomalies to further distinct positive and negative features.

VII. CONCLUSION

This paper presents FuncAnoDe, a function level anomaly
detection to detect abnormal simulation results with minimal
domain knowledge. To the best of our knowledge, this is the first
paper to introduce deep learning based function-level anomaly
detection in device simulations. Our comprehensive experi-
mental results demonstrate that our FuncAnoDe outperforms
baseline existing unsupervised clustering techniques. Despite
not being trained on the test dataset, FuncAnoDe shows robust
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network successfully detects both normal and abnormal samples
even in the presence of such noise, showcasing the robustness
of our method in handling potentially noisy real measurements.

generalization capabilities, effectively discriminating physically
inaccurate curves.
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