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Abstract—We investigate means to merge feature-scale and
reactor-scale models during plasma etching using Machine
Learning (ML) and interpolative approaches. First, we test the
SF6 plasma etching models based on a small dataset from
literature. We find that Gaussian Process Regression (GPR)
leads to significant over-fitting, resulting in waviness in the
predicted values in the range where no data is available. A Neural
Network (NN) model was likewise implemented with rectified
linear unit activation. This model provides linear prediction
between known values, resulting in a better qualitative fit to
experimental observations. Finally, we perform 18 750 chamber
simulations of a Cl2/Ar plasma while varying relevant input
parameters. The data is used to build a six-dimensional spline-
based inerpolative model of the chamber and provide a means
to quickly extract relevant fluxes for the feature-scale model.

Index Terms—process simulation, plasma etching, machine
learning, interpolation, Gaussian process regression, neural net-
works

I. INTRODUCTION

Plasma etching is a fundamental step during complemen-
tary semiconductor-metal-oxide (CMOS) fabrication [1] and
performing technology computer aided design (TCAD) sim-
ulations for this process provides insights into plasma be-
havior, enables optimization of process parameters, predicts
etch profiles, and reduces cost and time during development
[2]. However, the limitation of process TCAD is that it
concentrates on the feature scale and the link to equipment
conditions is often missing or is difficult to introduce [3].
We test several approaches to merge equipment information
into the feature-scale model so that an effective digital twin
of the plasma chamber is the input to the feature-scale model.
The implementation is based on an established and calibrated
model for silicon etching in an inductively-coupled plasma
(ICP) with SF6/O2 gas, as described by Belen et al. [4], [5]
and Bobinac et al. [6]. For these, the main parameters to the
physical model are the fluxes of neutral radicals and ions.
Experiments are performed to find how these fluxes change
while the plasma chamber inputs are varied with respect to the
pressure p in mTorr, O2 fraction in the feed (yO2 ), and applied
bias Vb in V. The inductive coil power (800 W), temperature
(5 ◦C), and total gas flow rate (80 sccm) are kept constant.

II. METHODS

The feature-scale plasma etching model assumes ballistic
transport of particles and Langmuir-type adsorption [7]. In
the chamber, the particle motion is primarily governed by

inter-particle interactions, as visualized in Fig. 1. The blue
circles represent neutral radicals which diffuse in the chamber
and whose direction of motion is represented by a cosine
distribution at the feature-scale. The red circles represent ions,
which are accelerated in the sheath potential and whose motion
is represented by a more directional power cosine distribution.

Fig. 1. The typical simulations scales when modeling plasma etching. The
reactor scale tracks particle-particle interactions, while the feature scale treats
particle motion as rays and only wafer surface intersections are recorded.

The equations used to calculate the steady-state surface
coverages of fluorine θF and oxygen θO for each time step
are given by
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where ΓF/O/i are the fluxes of F, O, and ion species, k is the
chemical etch rate constant, β is the oxygen recombination
rate, σSi is the surface site density of Si, YO/ie are the O and
ion-enhanced etch yields, and γF/O are the F and O sticking
coefficients. The surface etch rate is then calculated using

ER =
1

ρSi
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)
, (3)
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where ρSi is the density of the Si substrate. This feature-scale
model for SF6/O2 plasma etching is implemented in ViennaPS,
an in-house level set (LS) based process simulator [8], while
the accumulation of particles along the different locations of
the surface is solved using Monte Carlo ray tracing with
ViennaRay [9]. Therefore, the feature scale model takes the
particle fluxes as input, along with an oxygen proportionality
constant AO. These values are obtained from a calibrated
plasma chamber model, where the equipment inputs, such as
pressure, oxygen proportionality, and bias voltage are varied
[4], [5]. The data is provided in Table I.

TABLE I
SUMMARY OF THE CALIBRATED DATA FROM BELEN ET AL. [4], [5] FOR

THE FLUXES AND THE OXYGEN PROPORTIONALITY CONSTANT AO , USED
TO TRAIN THE MACHINE LEARNING (ML) MODEL FOR SF6 /O2 PLASMA

ETCHING. YO IS DIRECTLY PROPORTIONAL TO AO .

p yO2 Vb ΓF ΓO Γi AO

25 0.4375 120 5500 1500 10 3
25 0.5000 120 5000 2500 10 3
25 0.5625 120 4500 6000 10 2
25 0.6250 120 4000 10000 10 1
10 0.5000 20 2000 1000 20 3
25 0.5000 20 5000 2500 10 3
40 0.5000 20 7500 6000 5 3
5 0.0000 120 1500 10 20 5
25 0.0000 120 6000 20 8.5 4
75 0.0000 120 12000 80 2.5 3

The biggest challenge in providing a feature-scale model
which is linked to the equipment conditions is ensuring that
the fluxes of the different species can be represented as a
function of the chamber inputs. This can be achieved using
chamber-level simulations [10] which would likewise need to
be calibrated to the physical behavior. Instead, we attempt to
use the calibrated model and apply a ML approach to link
the chamber inputs (p, Vb, yO2 ) and outputs (ΓF/O/i, AO),
cf. Fig 2. We test Gaussian Process Regression (GPR) and
Neural Network (NN) implementations to assess the benefits
and limitations of each approach on the relatively small data
set.

A. Gaussian Process Regression

The benefit of GPR is that it provides flexibility, small data
efficiency, and uncertainty estimation [11]. This should allow
us to assess, based on the uncertainty, where more data is
required to improve the model. With GPR, the prior distri-
bution of model parameters is updated using observed data
while Gaussian distributions are used for the parameters and
training error. Bayes’ rule is used to calculate the subsequent
distribution of parameters, resulting in a Gaussian predictive
outcome function. While the method comes with a computa-
tional complexity of the order N3, with N being the number of
training samples, this is not a significant concern when running
small data sets, as we have here. The model uses a squared
exponential kernel k (x, x′) = σ2 exp

(
−γ ∥x− x′∥2

)
with

training parameters γ and σ2.
In order to at least roughly assess the quality of the model in

predicting values between those in the trained range, we plot

the results of a system where the pressure p and bias voltage
Vb are kept constant at 25 mTorr and 120 V, respectively, and
only the ratio between the O2 and SF6 flows is varied yO2 .
The plots are shown in Fig. 3(a). Intuitively, it should be clear
that increasing the oxygen content while keeping all other
parameters the same, including the total gas flow rate, would
result in an increased oxygen flux and reduced fluorine flux
at the wafer surface. However, due to the Gaussian nature
of the fitting and oversampling, we note waviness and an
increased oxygen flux when the oxygen fraction is at about
0.25. This is unrealistic and requires that a new measurement
is carried out at this point. A new measurement provides
significantly improved results and uncertainty estimates, as
shown in Fig. 3(b).

B. Neural Network

We then also implement a NN model [12] on the same data
set using an input layer with 3 neurons corresponding to p,
Vb, and yO2 and a hidden layers with 12 nodes employing
rectified linear unit activation. The output layer consists of
4 neurons with no activation corresponding to the F, O, and
ion fluxes and AO. Mean Squared Error (MSE) loss is used
to measure the difference between the predicted and trained
values. The results of the training for the fluoride flux are
given in Fig. 4. When we visualize the data points where the
pressure and bias voltage are fixed (p = 25mTorr, Vb = 120V)
while yO2 is varied, it is clear that there is a linear prediction
between the training points. This prediction is a more realistic
one than what we observed with the GPR since it qualitatively
provides an increasing oxygen flux at the wafer surface as a
consequence of an increased oxygen flow in the chamber.

C. Spline Interpolation

We also simulate a multi-scale Cl2/Ar plasma etch process,
from the reactor- to the feature-scale. A wide range of input
conditions is modeled at the chamber-scale, while varying the
chamber parameters such as coil power P (W), gas flow rate
Qf (sccm), pressure, Cl2 fraction in the feed, temperature
T , and bias voltage Vb, cf. Fig. 5. In total, 18 750 different
combinations of the chamber input parameters were simulated,
shown in Table II. The plasma is generated by first applying
electric power to the coils, creating a strong magnetic field
inside the chamber, thereby inducing high-energy electrons.
The gases, consisting of Cl2 and Ar are introduced into the
chamber through a nozzle at a specified flow rate. Collisions
between the gases and high-energy electrons result in sev-
eral possible reactions. The plasma chemistry for this study
includes electron impact reactions derived from the electron
momentum transfer cross sections provided by the SIGLO
database [13], released as part of the Plasma Data Exchange
Project and the LXCat website [14].

The etch rate and Cl surface coverage were calculated using
a model taking into consideration chemical etching, sputtering,
and ion-enhanced etching

ER =
1

ρTiN
(kσTiNθCl + YpΓi + YieΓiθF ) (4)
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Fig. 2. Workflow used for generating the relevant particle fluxes from a combination of experiments and a calibrated feature-scale model.

(a) Results of a GPR model when varying only yO2

(b) Results after adding a data point at yO2 = 0.25

Fig. 3. Results of a trained GPR model to predict feature-scale parameters
from a calibrated SF6/O2 ICP. The training values are shown as dots, the
model output as dark lines, and the uncertainty estimate (±2σ) as thin light-
colored lines.

θCl =
γClΓCl

γClΓCl + kσTiN + 2YieΓi
(5)

The results of the simulation were compiled into a hexeract
- a six dimensional hypercube - where each dimension repre-
sents one varied chamber input. This data is then used for the
spline interpolation, cf. Fig. 6(gray arrows). When using the
model at the feature-scale, performing chamber simulations
is not necessary. Instead, the inputs are directly used by

(a) NN model training fit (b) Flux predictions varying yO2

Fig. 4. NN model results after training to calibrated SF6/O2 ICP fluxes.

Fig. 5. Schematic diagram of the ICP system.

ViennaPS to apply the interpolated fluxes from the splines,
cf. Fig. 6(green arrows). This large data set will also allow us
to investigate the optimal ML algorithm without performing
costly and time-intensive experiments.

III. RESULTS AND CONCLUSION

The provided implementation allows to perform feature-
scale simulations on any generic geometry while using equip-
ment parameters as inputs without running chamber-level
simulation. As an example, the results of a cylindrical hole
etch using SF6 plasma with low and high O2 concentration
(yO2 = 0.3 and yO2 = 0.7, respectively) are shown in
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Fig. 6. Workflow of a multi-scale plasma etch model using multi-variable spline interpolation. Gray arrows show data generation and green arrows show the
application of the model at feature scale.

TABLE II
RANGE OF CHAMBER INPUTS FOR THE CHLORINE/ARGON PLASMA

ETCHING SIMULATION.

Parameter: Simulated values
Coil power Pcoil (W): 200 300 400 500 600
Gas flow rate Qf (sccm): 50 75 100 125 150
Pressure p (mTorr): 7 10 13 16 19
Cl2 ratio in Cl2/Ar yCl2 : 0.55 0.65 0.75 0.85 0.95
Temperature T (◦C): 25 35 45 55 65
Bias voltage Vb (V): 0 30 60 90 120 150

Fig 7. We show the results of a 20 s etching simulation using
both GPR- and NN-trained SF6 plasma. It is clear that the
GPR and NN models predict and extrapolate the results quite
differently, albeit with the same general trend. The GPR
model underestimates the O flux - 44.6×1015cm−2s−1 - as
a consequence of the oversampling noted in Fig. 3b. The
NN model provides a linear prediction for the flux, which
it calculates to be 103.3×1015cm−2s−1. While these values
need to be tested with experiments or chamber simulations, the
polynomial fitting, which is part of the GPR model, might not
be well suited for such problems, when only a small sample
size is available.

Fig. 7. SF6 plasma etching through a cylindrical mask (blue) of diameter
35µm, depth 120µm, and 2◦ taper angle. Pcoil, Qsccm, p, T , and Vb are
set to 800 W, 80 sccm, 25 mTorr, 5◦C, and -120 V, respectively, while yO2 is
set to 0.3 and 0.7.
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