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ABSTRACT

Recently, a Monte Carlo algorithm for the solution of
a two-particle kinetic equation has been developed. This
equation treats both single-particle scattering mecha-
nisms (electron-phonon scattering) and two-particle scat-
tering mechanisms (electron-electron scattering) in a
consistent manner [GK23]. In this work, we present the
extension of the algorithm to non-parabolic bands and
discuss a statistical enhancement algorithm.

MODEL

Investigating electronic transport in semiconductors
with the Monte Carlo (MC) method is based on the
calculation of multiple random propagation paths (trajec-
tories) and the computation of sample mean values. Each
trajectory comprises free flight segments determined by
Newtonian mechanics and scattering events described by
quantum mechanics.

The novelty in our approach is that for each time step,
we calculate two trajectories simultaneously. Those two
electrons are, apart from their single-particle scattering
rate, affected by a two-particle scattering rate which
determines when both particles will interact with each
other. The final states occupied by the electrons after
scattering is selected randomly from the distribution of
the allowed transitions.

NON-PARABOLICITY

For transport simulations in silicon at higher elec-
tric fields it is important to account for band non-
parabolicity. For this, we use the Kane-dispersion rela-
tion P23
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where « is the non-parabolicity coefficient. As a con-
sequence, the carrier transport mass becomes energy-
dependent, which must be taken into account in the
calculation of the free flight paths. In the evaluation of
the final states after electron-electron scattering (EES),

it is important to keep the total energy and momentum
conserved in order to avoid nonphysical effects.

Electron-Electron Scattering Rate

The total EES rate is defined as the integral of
the transition rate with respect to the final states, or
after changing variables, with respect to the momentum
transfer vector. In the case of a non-parabolic band,
this integral can no longer be evaluated analytically and
one has to resort to a rejection method. The goal is
to construct an analytically integrable auxiliary function
Wyp > w, Where w is the actual integrand representing
the transition rate. In this way, an upper bound of the
scattering rate I',, > I'c. can be found. The acceptance
probability p, = w/w,, along with a random number 7
then decides whether an actual scattering event (g < pg)
or a self-scattering event (ry > p,) is selected.
Defining the final wave vectors as k| = ki + q and
kl, = ks — q, the equation that simultaneously states
momentum and energy conservation is of the form

E(k1+q) + E(k2 —q) — E(k1) — E(k2) = 0.

Especially in the non-parabolic case, choosing the refer-
ence point as ko = (k2 + k1)/2 considerably simplifies
the problem. With K = ko — k1 and p = ¢ — K /2 the
energy balance equation becomes

9(p) := E(ko+p) + E(ko —p) — E(k1) — E(k2) = 0.

It turns out that the solution set of g(p) = 0 is a
rotationally symmetric ellipsoid. The short semi-axis is
orthogonal to kg and given by
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where N1 =14 aFi2. N3 = N1+ Ny — 1 is another
coefficient related to non-parabolicity. The long semi-
axis is parallel to ko:
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Note that the excentricity e vanishes in the parabolic
limit.

Assuming Fermi’s Golden rule and the matrix element
for screened Coulomb interaction results in the following
expression for the total scattering rate:

Slg(p)] 3 ne'
e =A d = —
« /R (K, — 2+ g2)2° 1 4m2he?
Substituting k} — k1 = p + s with s = K/2 and
assuming spherical polar coordinates with K as the polar
axis, leads to
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Integrating with respect to p can be carried out with the
help of the J-function.
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Since p = p(x,¢), which describes the ellipsoidal
level-set, is a function of both angles, the integrand
lacks azimuthal symmetry. We construct an analytically
integrable upper bound w,;, > w using the inequality
b<p<a

m Nsa? 2a
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Wyp = P

This function still contains an empirical parameter & > 1
which has yet to be determined. By means of the
following anti-derivative,

X
I(x) = 27r/ (47 + 40>y + 253))‘2 dy’
-1
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the upper bound of the EES rate is readily obtained:
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Computational experiments show that a value of ® = 2 is
required to ensure w,;, > w on the whole unit sphere. An
improved auxiliary function without such free parameter
is currently being developed.

Final States after Electron-Electron Scattering

The cumulative probability distribution for ¥ is given
by p(cosd) = I(cosv)/I(1). Applying the inversion
method yields an expression for the random polar angle
). In spherical coordinates the direction of p with respect
to K is defined by the two random numbers r; and 79
as

53 — 71 (4b2 + Qﬁg)
B2 + 4r1b? ’

The magnitude of p is given by the equation for the
aforementioned ellipsoid

cost = ¢ =2mry.

b2
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where -y is the angle between p and k. With probability
w/wy, a physical EES event is chosen and the wave
vectors are updated: k} = ko + p, k) = ko — p.

STATISTICAL ENHANCEMENT

To study the high-energy tail of the energy distribution
function (EDF), an algorithm that enhances the number
of sampling points at higher energies is required.
Although the cascaded splitting/gathering algorithm
proposed by Phillips and Price [PJP77] is very
successful in the case of the single-particle MC method
[PIP77], for non-uniform electric fields it is not directly
applicable to the two-particle MC method. Therefore,
we devised a new method based on the notion that any
stationary average can be viewed as a time average. An
integral over the simulation time 7" is split into multiple
integrals that we refer to as time frames. Within a time
frame, the MC simulation, designated as traj. in Figure
1, can be repeated N-times, while the contribution to
the averages is weighted by 1/N. A time frame is
repeated once an electron enters the rare domain (for
instance, Fyo > Eyw Az < © < x,, Figure 2). Then,
N trajectories each with weight 1/ are simulated for
the time frame duration ¢y, Common trajectories are
terminated at the end of each time frame, and rare ones
are continued with adjusted weights.

Cascading

Applying the algorithm in cascade requires an appro-
priate data structure along with clearly defined methods
for manipulation. We chose a tree with the following
characteristics:

o Each node holds a Simulation State (i.e., the states
of the sample electron and all partner electrons)
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Frame 1 =~ Frame 2 Frame M
Entering traj. 1 traj. 1 traj. 1 Leaving
Rare Domain traj. 2 traj. 2 traj. 2 Rare Domain
traj. N traj. N traj. N

Fig. 1. Repeated time frame algorithm. A rare simulation state is
calculated repeatedly for a certain period of time.
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Fig. 2. Left: Distribution of common samples and boundaries of
rare-zone. Right: Distribution of rare samples of the repeated time
frame algorithm.

e A node has either N or O children.
o The weight of a node is given by w;,, = Wparent/N .
Zleafs W = Wroot
The sequence of the algorithm is as follows:
1) Make a list of all leaf nodes
2) Simulate one time frame for each list entry, and
determine if it is still of interest.
3) Restructure the tree, go to — 1

o Wrgot = 1,

For each level in the tree, there exists a corresponding
energy threshold. Thus, a sample is of interest when
the energy exceeds this threshold. In order to restructure
the tree, we allow two methods: splitting and gathering.
Whenever a leaf node is of interest, it is split, meaning
that we add IV child nodes to it and copy the Simulation
State to all of them. Whenever all siblings of one leaf
node are no longer of interest, they are gathered. Gath-
ering means we copy the state from one of the siblings
to the parent node and remove all siblings thereafter.

RESULTS

The conduction band structure of silicon is modeled
by six equivalent isotropic valleys, characterized by a
Kane-dispersion relation with m = 0.3mgp and @ =
0.5eV~1. Acoustic and intervalley phonon scattering is
implemented according to [JL12]. To test our models,
we simulate a potential barrier, similar to the surface
potential of a MOSFET. If an electron leaves the device

through a contact, a new one is injected with equal
probability in the drain or source. The new electron state
is obtained from an equilibrium box, which is a MC
simulation on its own.

Figure 3 and Figure 4 show the energy distribution
function in the parabolic and in the non-parabolic case,
respectively. The color intensity correlates to the amount
of samples. In domains with bright colors, the amounts of
samples are the highest. The non-parabolic model leads
to a faster decay of the electron energy in the drain region
compared to the parabolic one. This effect is caused by
an increase in the scattering rate at higher energies in
the non-parabolic model.
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Fig. 3. Energy distribution function (EDF) for a parabolic dispersion.
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Fig. 4. EDF for a non-parabolic dispersion. A faster decay of the
electron energy in the drain region is observed.

Figure 5 shows carrier density, mean energy, and
mean velocity as well as the screening length \ = 31
across the device. We compared different initial carrier
densities in the parabolic and non-parabolic models. As
a reference, also a simulation without EES is included.
Velocities and energies are smaller in non-parabolic
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simulations due to higher scattering rates. The screening
length in the channel appears to be 10 — 30 times larger
than in the contracts. In the parabolic case, we can also
see that the mean energy is lower for higher initial carrier
densities.
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Fig. 5. Device characteristics for different simulation settings.

Figure 6 shows cut through the EDF in Figure 3 at
x = 100nm. Since highly energetic electrons have the
ability to harm the device, we are interested in the tails
of the distributions. In the parabolic case, we can see
that higher initial carrier concentrations enhance the tail.
To increase the resolution in the high-energy tail the
repeated time frame algorithm was used. Figure 7 shows
the effectiveness of the algorithm. Here again a cut at
100nm is studied. Simulations were performed with (i)
no enhancement, (ii) 100 repetitions above 1.7 eV and
(iii), 1000 repetitions above 1.8 eV. It can clearly be seen
that the algorithm produces more samples in the high-
energy region and, therefore, reduces the statistical error
in those domains.
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Fig. 6. EDF at position x = 100 nm. Enhancement of the high-
energy tail scales with the carrier concentration as predicted by
[CL96].
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Fig. 7. Normalized sample distribution at = 100 nm for
n =10 ecm™3, Ey = 1.7 eV with 100 repetitions and Fy, = 1.8
eV with 1000 repetitions.
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