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Abstract—By combining a tight-binding solid-state descrip-
tion with an equation of motion for a density matrix defined
at the same lattice points, an efficient and atomistic transport
model emerges. Instead of mapping the density matrix onto
a phase space function like the Wigner function we maintain
a real space description, allowing for easy implementation of
spatially varying lattice distances and hopping terms. This
vastly extends the possible applications of density matrix
approaches which on one hand usually require a constant
discretization width to perform a Fourier transform and on
the other hand usually start from a simple effective mass
Hamiltonian. Our approach is applied onto GaAs/AlxGa1−xAs
resonant tunneling diodes and agrees well with stationary
results obtained by a quantum transmitting boundary method.
The explicit time-resolved algorithm is shown to converge well
and shows great computational efficiency when compared to
a Quantum Liouville-type equation. Additionally, the derived
equation of motion is well suited for the extension to more
complex problems, especially tight binding models that take
more neighbors or different orbitals into account.

Index Terms—Computational nanotechnology, Quantum
transport, von-Neumann equation, Density Matrix, Het-
erostructures

I. Introduction

Even though the interest and research into density
matrix approaches and foremost the Wigner transport
equation (WTE) remains strong [1], they still have not
caught up to the standard of other transport models,
where the options to include for example multiple band
tight-binding models or even first-principles methods are
readily available and easily solved in real or mode-
space (e.g. [2], [3]). However, on account of the extreme
computational burden these methods are mostly restricted
to the stationary case. In order to fill the gap of quantum
transport models capable to model the atomistic yet time-
resolved device behavior in e.g. THz amplifiers or ultrafast
switches an equation of motion for the density matrix
based on a tight-binding Hamiltonian can be set up. Here,
we extend our previously presented approach for such
equation [4], [5] in two major ways. Most importantly, the
density matrix is solved in real space and on a staggered
grid that results from the tight-binding Hamiltonian. In
addition, it is applied onto a GaAs/AlxGa1−xAs reso-
nant tunneling diode (RTD) (Fig. 1a) with the inclusion

of spatially varying hopping terms, corresponding to a
spatially dependent effective mass in the usual models.
Two different values for the alloy content x = 0.2 and
x = 0.3 are considered which lead to different strength
of the discontinuity at the GaAs/AlGaAs interfaces. For
the sake of simplicity, a replacement model with only the
nearest neighbor interaction taken into account is used.

II. Equation of motion for the tight-binding density
matrix

The derivation of the equation of motion for the
tight-binding density matrix is summarized briefly, as it
mainly follows [4] where, however, the resulting transport
equation was mapped onto phase space and simplified to
a uniform grid formulation. To start off, the tight-binding
Hamiltonian for a one-dimensional atomic chain with the
atoms located at the locations u is expressed in terms of
fermionic creation and annihilation operators ĉ† and ĉ

Ĥ =
∑
u,m

γ̂umĉ†uĉm +
∑
u

εuĉ
†
uĉu, (1)

where γ̂um contains the hopping energy to the atom at
lattice location m and εu the onsite energy [6]. Similarly,
the density operator can be written in terms of the
fermionic field operators

ρ̂ =
∑
j

ϕ∗
j (r)ĉ

†
j ·

∑
i

ϕi(r
′)ĉi, (2)

with the orbital functions contained in ϕi and ϕj . After
multiplying (2) with ϕl from the left and ϕ∗

s from the
right and integrating over r and r′, the density operator
at the lattice site ls is given by the pair operator [4]

ρ̂ls = ĉ†l ĉs. (3)

Here, the coordinates l and s correspond to the conven-
tional coordinates x and x′. Inserting (1) and (3) into
a Heisenberg equation of motion and utilizing fermionic
commutator rules leads to an equation for the density
matrix elements defined in terms of the expectation value
of the pair operator [7] ρls = 〈ρ̂ls〉:

−ı~
d

dt
ρls =

∑
u

γulρus −
∑
m

γmsρlm + (εl − εs)ρls, (4)
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as is visualized in Fig. 1b. Similar to the coordinate
transform in the Wigner-Weyl transform, the coordinates
l and s are then mapped onto the discrete center of mass
coordinates χ and ξ according to

χ =
(l + s)

2
and ξ = l − s, (5)

resulting in a nonuniform grid of locations for the tight-
binding density matrix in center of mass coordinates.

If a constant lattice spacing for the initial tight-
binding Hamiltonian is assumed, the density ma-
trix elements can be expressed in terms of the
vectors pn = p(χn, ξr=1, ..., ξr=Nξ

) and qn+ 1
2

=
q(χn+ 1

2
, ξr= 3

2
, ..., ξr=Nξ− 1

2
), which form a staggered grid

with an alternating even and odd number of ξ elements
(see Fig. 1c). In this regard the presented approach is not
unlike the method originally investigated by Mains and
Haddad by a rigorous derivation of the Wigner function
[8], albeit in real space and not phase space.

Rewriting (4) in center of mass coordinates and in ma-
trix and vector notation yields the two coupled equations

−ı~
∂

∂t
pn = Mn− 1

2
· qn− 1

2
−Mn+ 1

2
· qn+ 1

2
+ Vn · pn

−ı~
∂

∂t
qn+ 1

2
= Mn · pn −Mn+1 · pn+1 + Vn+ 1

2
· qn+ 1

2

(6)
with the matrix
Mn− 1

2
=

γ(n− 1
2 ,r=1),(n,r= 3

2 )
0 0 0

−γ(n− 1
2 ,r=2),(n,r= 3

2 )
γ(n− 1

2 ,r=2),(n,r= 5
2 )

0 0

0 −γ... γ... 0

0 0 −γ...
. . .


(7)

containing the hopping terms and the diagonal matrix
Vn which contains the matrix elements Vn,r = εn+ 1

2 r
−

εn− 1
2 r

+ V̄n+ 1
2 r

− V̄n+ 1
2 r

on its diagonal that include the
onsite energies ε and any applied external biases V̄ .
The expressions for Mn and Vn+ 1

2
are similar and thus

omitted. Only the nearest neighbor coupling is included
in (6) for the sake of simplicity. However, the extension
to account for more neighbors is straightforward [4]. (6) is
the basis for all further stationary and transient studies.

A. Discussion of the proposed approach
The key aspects of the resulting formalism are sum-

marized in the following section. In contrast to most
other density matrix approaches in literature, most no-
tably those utilizing the WTE, no information is lost
during the transform onto center of mass coordinates
[8], [9]. This is because no unitary transform between
the coordinates is possible, if a uniform discretization
grid is used in both the original and the center mass
of mass coordinates. This is alleviated by the use of a
staggered grid, though the domain of the two descriptions
still does not coincide exactly because of the system
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Fig. 1. A schematic of the resonant tunneling diode is shown (a) along
with the consequent tight-binding density matrix scheme (b) for an
atomic chain of the materials a (e.g. GaAs) and b (e.g AlGaAs). The
resulting locations of the density matrix elements in center of mass
coordinates are shown in (c). For the device in question the difference
in lattice spacing is vastly exaggerated for the sake of clarity, as the
lattice constants of GaAs and AlGaAs differ by less than 0.1 %.

boundaries [9]. Additionally, there is no need to introduce
discretization schemes such as upwind or finite volume
methods in the first place, as the discretization directly
follows from the tight-binding Hamiltonian and locations
of the replacement orbitals that are used. Another benefit
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lies in the fact, that a spatially varying lattice spacing
in heterostructures can readily be taken into account, as
long as the contacts are sufficiently long and the lattice
spacing in the drain and source contacts is constant since
the Fourier transform is only applied locally at the device
contacts to include inflow boundary conditions [10], as
it can also be seen from Fig. 1c. Finally, the real space
system matrix exhibits far higher sparsity than its phase
space counterparts and can thus, when combined with
the application of an explicit Runge-Kutta method for the
time derivative, lead to lower computation times and lower
memory requirements. In the case of spatially varying
hopping terms (i.e. spatially varying effective masses) first
results show that transient simulations run on the same
hardware (Intel Xeon E5) are more than one order of
magnitude faster when compared to a Quantum Liouville-
type equation (QLTE) with typical discretization values
(see [11]), though further quantitative research regarding
the relative error is necessary.

However, these advantages come with several new chal-
lenges when the algorithm is applied, especially onto open
devices such as RTDs or FETs. First and foremost, the
boundary conditions in χ and ξ have a large impact on
the numerical stability. In terms of the inflow boundary
conditions, these issues arise as part of the discretization
pattern shown in (6). Whereas for conventional methods
only one boundary term per contact is needed, with the
proposed method two inflow boundary terms are set up,
e.g. in case of the drain contact p1 and q 3

2
in order

for the system matrix to have a full rank. As such,
inflow boundary conditions are needed for density matrix
elements which do not lie at the device contacts and
therefore do not necessarily obey the Fermi distribution.
This issue can be alleviated by introducing long contact
regions with a constant potential. Further research of the
influence of the complex absorbing potential (CAP) [12]
on the staggered grid density matrix formalism is also
needed. Compared to the conventional applications of the
WTE or QLTE (e.g. [11]) even small deviations of the
CAP parameters such as amplitude or length influence the
obtained charge carrier density, so that e.g. analysis of the
eigenvalue spectrum of the system matrix is necessary to
find appropriate parameters.

III. Application onto AlGaAs/GaAs RTDs
The most relevant structural parameters of the RTD are

given in Fig. 1a. The hopping terms are calculated using
γGaAs-GaAs = ~2/(2mGaAsa

2
0) with m∗

GaAs = 0.063 · m0

and a similar term for γAlGaAs-AlGaAs with m∗
AlGaAs =

(0.063 + 0.083x)m0 where x is the Al alloy content. The
same expression can be used for γGaAs−AlGaAs albeit with
the harmonic mean value of the two effective masses. The
onsite energies are calculated to result in conduction band
energies of EC,GaAs = 1.424 eV and EC,AlGaAs = 1.424 +
dEC · (1.155x+0.37x2) eV with dEC = 0.73 to account for
the band offset. A constant lattice constant of a0 = 0.5
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Fig. 2. Cutout of the center section of the density matrix around the
barriers as calculated on a staggered grid for the equilibrium case
with a constant effective mass and gallium alloy content x=0.2.

nm is chosen for the sake of simplicity as it only affects the
way the potential is calculated. For the source and drain
regions, a doping concentration of 2·1018 dopants · cm−1 is
used with an intrinsic channel region in between, where the
flatband potential is assumed to decrease linearly within.

Regarding the computational domain, Nξ = 85 and
Nξ = 84 discrete values in ξ-direction are used for the p
and q grid, respectively. The number of χ values directly
follows from the device length from which Nχ = 227
values fall on the p grid and Nχ = 226 values on the q
grid. A complex absorbing potential is added to minimize
reflections due to the finite computational domain [12].
The time derivative is approximated by use of a fourth
order Runge-Kutta method [13] with a time step width of
2 · 10−17 s.

A. Results
Part of the real space density matrix for the equilibrium

case and an alloy content of x = 0.2 is shown in Fig. 2
as a scatter plot to further visualize the computational
domain consisting of the two staggered grids. The charge
carrier density for the same alloy content, spatially varying
hopping terms and an applied voltage of VDS = 0.1 V
is shown in Fig. 3, along with reference results obtained
by a quantum transmitting boundary method (QTBM)
for the same tight-binding Hamiltonian. Even though
device boundaries are treated vastly different in these
two approaches, the charge carrier densities agree well.
The same can be said for the drain-end current densities
shown in Fig. 4 for the two different alloy contents and
spatially constant, as well as varying, hopping terms.
Some deviations of the drain-end current densities occur
at higher applied voltages, likely from the aforementioned
challenges in finding adequate inflow boundary conditions.
Finally, the time-resolved evolution of the expectation
values can be seen in Fig. 5 after the drain-source voltage
is switched from VDS = 0.15 V to VDS = 0.25 at t = 0 s
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Fig. 3. The charge carrier densities from the tight-binding density
matrix approach (DM) are shown for x=0.2 and spatially varying
hopping terms for an applied drain-source voltage of 0.1 V, along with
the flatband potential and reference results obtained by a QTBM.

Drain-source voltage (V)

C
ur

re
nt

de
ns

ity
(G

A
/m

2
)

0 0.1 0.2 0.3
0

10

20

30
DM γconst. x=0.2 DM γvar. x=0.2
DM γconst. x=0.3 DM γvar. x=0.3

QTBM

Fig. 4. The current densities from the tight-binding density matrix
approach (DM) agree well with the QTBM reference results.

for x = 0.2 and spatially varying hopping terms. Good
convergence towards the stationary current density is
achieved. The inset also shows reference results obtained
from a QLTE with the inclusion of a spatially varying
effective mass [11]. Again, the results mostly coincide
with small oscillations that can be seen for the proposed
approach, likely stemming from the interaction with the
device contacts.
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