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Abstract—We present a cluster-based semi-empirical model for
dopant activation in silicon carbide (SiC). We model the following
species: dopants on lattice points, point defects, dopant-defect
pairs, and small clusters of different sizes. We define the possible
reactions between these species, add their reaction kinetics, and
use a system of ordinary differential equations (ODEs) to model
the time evolution of the concentration of the different species
during annealing. We use the MaxLIPO+TR optimizer to obtain
the post-implant conditions of the SiC film, including the various
cluster concentrations. These concentrations are not measurable
and can only be calculated through time-intensive atomistic
simulations, which we apply to verify and calibrate our model.
The framework presented here, consisting of an ODE model
generator, an ODE solver and an optimizer, gives a practical
solution to predict as-implanted defect concentrations, which is
missing from previous works.

Index Terms—Silicon carbide, ion implantation, annealing,
dopant activation, nanoscale clusters, process simulation

I. INTRODUCTION

The primary means to introduce a dopant in semiconductors
today is through ion implantation, which allows for precise
control of the doped region depth and concentration. Its main
drawback is its induced damage to the semiconductor crystal
structure. This damage weakens the semiconductor’s electrical
properties by making some dopant atoms electrically inactive.
Inactive dopant atoms combine in smaller or bigger clusters
instead of residing in desired lattice positions. This change of
properties depends on the ion flux, energy, and implantation
temperature. Subsequent processing steps, like annealing, can
repair the crystal structure and activate the dopant atoms.
Depending on the damage caused by ion implantation, the
semiconductor, such as silicon carbide (SiC), may require
temperatures as high as 2000°C during annealing. Physical
simulations may reveal that a lower temperature or shorter
annealing time might be sufficient when the added effect
of subsequent processing steps like thermal oxidation can
also be considered. An important property of ion-implanted
semiconductors is the activation ratio, which we address in
this work. It is defined as the ratio of electrically active dopant
atoms to the total implanted dopant amount.

Wendler et al. [1] have shown that, depending on the implant
species, dose, and temperature, the damage in SiC is in the
form of point defects, clusters of different sizes, and partially
or fully amorphous regions. Weber et al. [2] has simulated

primary knock-on atoms (PKAs) of C, Si, and Au irradiations
with energies up to 50 keV. They have found that most clusters
resulting from Si irradiation contained only up to 4 interstitials.
Therefore, we restrict our investigation to small clusters since
ion implantation in SiC is performed with light ions (B, Al,
N, and P) [3].

Since silicon has been used in microelectronics for many
decades, there is significantly more information on Si doping
and cluster-based modelling when compared to SiC. Stiebel
et al. [4] propose a larger model for Si doping consisting of 9
cluster species and a smaller one with only 4 cluster species,
together with the applied reaction rates. Yoo et al. [5] use
binding energies from theoretical and experimental works on
a similar set of small cluster species up to B4I2. Kwok et
al. [6] use maximum likelihood and maximum a posteriori
estimations of results from density functional theory (DFT)
simulations and experiments to derive physical parameters for
clusters with sizes of up to 7 atoms. They did not distinguish
the exact composition of mixed boron-silicon clusters of
the same size. Although most authors agree that only small
clusters considerably impact dopant activation, Aboy et al. [7]
showed some crucial effects of larger clusters. They have
demonstrated that mixed clusters with up to 9 boron and
silicon atoms can impact boron activation when using high
doping concentrations.

II. MODEL DESIGN

Our model is based on an established cluster-based model
for dopant activation in silicon [8]. We simulate the following
species in our model for boron activation in SiC:

• Point defects: interstitials and vacancies
• Dopant-defect pairs: XIntA and XVacA
• Loose active dopant: XLA
• Dopant-interstitial clusters like X2Int3
We neglect the difference between C and Si interstitials and

vacancies and model the following types of reactions:
• Point defect recombination: Int + Vac←−→ 0
• Pair and point defect interaction: XIntA + Vac←−→ XLA
• Dopant defect cluster formation and dissolution:

Int + XIntA ←−→ X1Int2
Through the simulation, we assume that the high-speed

processes, like part of the point defect recombination, which is

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

im
ul

at
io

n 
of

 S
em

ic
on

du
ct

or
 P

ro
ce

ss
es

 a
nd

 D
ev

ic
es

 (S
IS

PA
D)

 |
 9

79
-8

-3
31

5-
16

35
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SI
SP

AD
62

62
6.

20
24

.1
07

32
97

8

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:06:28 UTC from IEEE Xplore.  Restrictions apply. 



in the order of less than one millisecond, are already completed
as our timescale of simulation is several orders of magnitude
longer, in the order of seconds. We concentrate our model on
elementary second-order reactions [9, Chapter 6] which poses
a practical limit on the number of species in the modelled
system because optimizing for more than dozens of initial
concentrations (with at least as many ODEs) would not be
feasible. Therefore, we use this general form of reaction rates
for a reaction X + Y←−→ Z:

• has a forward rate Rf = CXCY Kf

• and a backward rate Rr = CZKr

• Backward rate for point defect recombination is a special
case: Rr = CX,eqCY,eqKr

We have chosen to model the time evolution of the species
in a continuum model, so the species are modelled by their
continuous concentrations. Diffusion and reactions between
the species influence the time evolution of the concentrations
at any point. The reactions are modelled using a system of
ODEs influenced by their forward and backward rates. Using
the above notations, the system of ODEs can be written as:

∂CX

∂t
=

∑
i∈MX

Rfi −
∑

j∈NX

Rrj

for each species X in the system, where MX is the set
of reactions producing X and NX is the set of reactions
consuming X .

III. CHOICE OF OPTIMIZER ALGORITHM

To solve the set of ODEs which describe the activation, the
reaction rates and initial concentration of species and clusters
are required. Here, initial concentrations refer to concentra-
tions after ion implantation, eventually also considering a very
short annealing time. The reaction rates can be computed using
point defect equilibrium concentrations, mobile species diffu-
sivity coefficients, activation energies, crystal lattice constant,
and auxiliary coefficients. These values are either known from
the literature or can be estimated using ab-initio DFT and
molecular dynamics (MD) simulations.

We can indirectly assess the initial concentrations of point
defects and some cluster species if we have sufficient data
from activation measurements or atomistic simulations before
and after annealing with well-defined process conditions.
Moreover, some missing parameters for the reaction rates can
also be estimated. One way to find these values is by using
an optimizer.

Here, using a first guess for initial concentrations and
parameters, the ODE system is solved for a well-defined
annealing time, or until a steady-state solution is reached.
Then, the difference between the calculated and the measured
activation ratio gives the error of this evaluation. We can use
an optimizer to systematically tune the free parameters and use
the evaluation error as feedback for the optimization process.
This task is then a multi-variable single-objective optimization
problem.

For the ODE solver, we use the Sundials CVODE li-
brary with a dense solver method and the BDF multistep

method [10], [11]. For the optimization problem, we have
chosen Dlib’s MaxLIPO+TR global optimizer [12], [13]. An
advantage of this optimizer over alternatives, like Bayesian
optimization, is that it does not require tuning hyperparam-
eters. As we have a complex optimization problem with
several dozens of dimensions, MaxLIPO+TR is also superior
to gradient-based optimizers.

The Dlib global optimizer assumes that the function to
optimize for is Lipschitz-continuous. For the 1D case this must
hold |f(x1)−f(x2)| <= k|x1−x2| for all x1, x2 ∈ some inter-
val, where f(x) is the function to optimize for. The key idea is
maintaining the function’s piecewise linear upper bound using
the evaluated points: U(x) = maxi=1..t (f(xi) + k∥x− xi∥)
where k is estimated in each turn.

The Dlib global optimizer first chooses points at random.
Then, for every odd step, it sets the next point to sample: xt+1

where U(x) is minimal. The function f(x) is then evaluated
here. For every even step, a Powell-style trust region search
is performed using a quadratic approximation to find the local
minimum.

Since the Dlib library uses hyperrectangle search space, and
some dimensions are concentrations, out of the box, it would
search for concentration combinations which would not satisfy
physical constraints like doping. Therefore, the library was
modified to include restraints to ensure a physically feasible
search space.

IV. OPTIMIZER DESIGN

To test the framework and the optimization process, we use
the empirical target function shown in Fig. 1 from Šimonka’s
PhD thesis [14]. The function approximates the boron activa-
tion ratio as a function of annealing temperature and doping
concentration. Fig. 1 shows experimental results as colour
dots from [15]. We use this model as a target for our opti-
mizer. Instead of optimizing initial concentrations for various
temperature-doping pairs individually, we pick an annealing
temperature and search the initial concentrations as functions
of doping concentrations (black dots in Fig.1). We suspect
that by having many temperature-dependent parameters in the
system, using the optimized values for other temperatures may
give a good approximation.

We have chosen cubic natural splines as the functions de-
scribing each initial concentration because these have intuitive
behaviour as we move the control nodes. The control nodes’ X
coordinates are fixed using a geometric progression across the
concentration domain of interest, cf. Fig. 2. The Y coordinates
represent concentrations with a wide dynamic range, so the
optimizer and the splines use the natural logarithm of the
concentrations for optimal behaviour. The optimizer then looks
for the Y coordinates within the search space. We have found
that four control nodes are sufficient for a good fit. The
concentration domain of interest is the domain for a given
temperature, where the activation ratio is within the interval
(0.1, 0.9).

Splines tend to overshoot the bounds when one control node
is near the bound and an adjacent one is further away. In our
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Figure 1: Electrical activation as a function of the total concen-
tration and annealing temperature for B-implanted SiC. The
grid represents the empirical function, the colour points are
experimental data, and the black points are our optimization
target (see text).

Cdop

Ract

Figure 2: A spline within bounds with four control nodes.

case, this could result in a nonphysical concentration value,
so we have developed an algorithm to slightly adjust control
nodes, causing overshoot while preserving the spline’s form.
The splines’ control nodes at a given doping concentration
represent a valid initial concentration setting, including the
desired initial activation ratio. However, as the interpolation
is based on the logarithm of the concentrations, taking the
exponential of the interpolated values does not add up to
the desired doping or initial active concentrations. Therefore,
we calculate the total active and cluster concentrations and
normalize each interpolated concentration to allow these totals
to have the desired value. The optimizer needs to calculate
the error in each iteration, cf. Fig. 4. This is done in several
sample points whose concentrations can be given manually
or allow the application to calculate them similarly to the
spline control points. With a dense enough sample point set,
the optimizer can consider every part of the splines in its
decisions, cf. Fig. 3. The aggregated error value is calculated
using E =

∑
i (logAacti − logAtargi)

2.
Simulations show that an independent four-control node

spline per species gives too many degrees of freedom, resulting
in extreme waviness of the splines, suggesting likely nonphys-

calculate Aact

E =
∑

i (logAacti − logAtargi)
2

Figure 3: error is evaluated at a denser sample point set than
the spline control nodes.

ical behaviour. To overcome this, we penalize waviness by
summing the relative changes of the node’s Y coordinates and
adding these sums to the above-mentioned error.

Pick new candidate solution

Create splines

Evaluate sample points

Calculate error

Check if ready?

Parameters, target

Optimized values

Optimizer

Yes No

Figure 4: Optimizer workflow.

We have designed the optimizer to find the missing reaction
rates (forward, reverse, or both). These are modelled to be
concentration-independent, so each unknown rate requires
only one more dimension in the search space. We have
developed a model generator to help investigate various cluster
configurations, species reactions and model parameters.

V. RESULTS

We use the black dots corresponding to annealing at
1400 ◦C in Fig.1 as the optimization target. We have decided
to use the 4 cluster species in the model: B1Int2, B2, B2Int1
and B2Int2. Since we do not have the cluster activation
energies for SiC, we also used the optimizer to obtain the
missing reaction rates. Fig. 5 shows the splines representing
the initial concentration of each species as a function of doping
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concentration. The plot range has been selected such that the
target activation ratio ranges from 0.06 to 0.95. We have
chosen the initial activation ratio to be uniformly 0.05, cf.
Fig. 6.

This model shows an almost perfect fit with the optimiza-
tion target. It consists of the estimated reaction rates and
the functions of species’ initial concentrations versus doping
concentration.
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Figure 6: Target (red) and modelled (green) activation ratio vs
doping concentration when annealing at 1400 ◦C.

VI. CONCLUSION

We have developed a semi-empirical cluster model for
dopant activation in silicon carbide and an optimizer applica-
tion to determine the initial concentrations of the defect species
present in the material after ion implantation. The optimizer
can obtain the initial concentrations as functions of the as-
implanted concentrations for a specific annealing temperature.
It enables us to obtain values for physical as well as fitting
parameters, which are difficult to obtain experimentally.

ACKNOWLEDGMENT

Financial support by the Federal Ministry of Labour and
Economy, the National Foundation for Research, Technology
and Development, and the Christian Doppler Research Asso-
ciation is gratefully acknowledged.

REFERENCES

[1] E. Wendler, A. Heft, and W. Wesch, “Ion-beam induced
damage and annealing behaviour in sic,” Nucl. Instr. and
Methods in Phys. Research, vol. 141, no. 1, pp. 105–117,
1998. DOI: 10.1016/S0168-583X(98)00083-4.

[2] W. Weber, F. Gao, R. Devanathan, W. Jiang, and C. Wang,
“Ion-beam induced defects and nanoscale amorphous clus-
ters in silicon carbide,” Nucl. Instr. and Methods in Phys.
Research, vol. 216, pp. 25–35, 2004. DOI: 10.1016/j.nimb.
2003.11.016.

[3] Roccaforte et al., “Selective doping in silicon carbide power
devices,” Materials, vol. 14, no. 14, 2021. DOI: 10 . 3390 /
ma14143923.

[4] D. Stiebel, P. Pichler, and H. Ryssel, “On the influence of
boron-interstitial complexes on transient enhanced diffusion,”
MRS Proceedings, vol. 568, p. 141, 1999. DOI: 10 . 1557 /
PROC-568-141.

[5] J. H. Yoo, C. O. Hwang, B. J. Kim, and T. Won, “Simple
atomistic modeling of dominant b m i n clusters in boron
diffusion,” Molecular Simulation, vol. 31, no. 12, pp. 817–
824, 2005. DOI: 10.1080/08927020500314118.

[6] C. T. M. Kwok, R. D. Braatz, S. Paul, W. Lerch, and E. G.
Seebauer, AIChE Journal, vol. 56, no. 2, pp. 515–521, 2010.
DOI: 10.1002/aic.11984.

[7] M. Aboy, L. Pelaz, E. Bruno, S. Mirabella, and S. Boninelli,
“Kinetics of large B clusters in crystalline and preamor-
phized silicon,” Journal of Applied Physics, vol. 110, no. 7,
p. 073 524, Oct. 2011. DOI: 10.1063/1.3639280.

[8] K. Suzuki, T. Miyashita, Y. Tada, A. Hoefler, N. Strecker, and
W. Fichtner, “Damage calibration concept and novel b cluster
reaction model for b transient enhanced diffusion over thermal
process range from 600/spl deg/c (839 h) to 1100/spl deg/c
(5 s) with various ion implantation doses and energies,” in Int
Electron Devices Meeting Techn. Digest, 1997, pp. 501–504.
DOI: 10.1109/IEDM.1997.650433.

[9] A. Hofmann, Physical chemistry essentials, eng. Cham:
Springer, 2018, ISBN: 3319741667.

[10] Gardner et al., “Enabling new flexibility in the SUNDIALS
suite of nonlinear and differential/algebraic equation solvers,”
ACM TOMS, 2022. DOI: 10.1145/3539801.

[11] Hindmarsh et al., “SUNDIALS: Suite of nonlinear and differ-
ential/algebraic equation solvers,” ACM TOMS, vol. 31, no. 3,
pp. 363–396, 2005. DOI: 10.1145/1089014.1089020.

[12] C. Malherbe and N. Vayatis, Global optimization of Lipschitz
functions, Aug. 2017.

[13] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of
Machine Learning Research, vol. 10, no. 60, pp. 1755–1758,
2009. [Online]. Available: http://jmlr.org/papers/v10/king09a.
html.
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