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Abstract— Following a summary of the constraints 

associated with simulations using pillar-wise-based methods to 

design meta-surfaces, we will present our latest progress in the 

domain of simulating large scale meta-surfaces, including 

convolutional neural network-driven emulations. We highlight 

the significance of accurately modeling the impact of the 

interaction between the pillars in a meta-surface, which enables 

the elimination of meta-surface designs with poor optical 

performances (e.g. zeroth orders in a beam shaper) during the 

design verification stages. 

Keywords—Meta-surface, Neural network, Flat optics, Beam 

shaper, Meta-lenses, Meta-diffuser. 

 

I. INTRODUCTION  

A meta-surface consists of nanostructures that are smaller than 
the wavelength of light and can be utilized to create functional 
devices with an ultra-thin profile [1][2][3]. Research 
laboratories using electron beam lithography have 
demonstrated that a large variety of optical devices, such as a 
lens, spectral filters, a polarization band pass filter, and a beam 
shaper (also call hereafter meta-diffuser), can be efficiently 
replaced by ‘flat’ meta-surface-based optics.  Meta-surfaces 
are now sufficiently advanced to transition into large-scale 
production. Semi-conductor companies are preparing for a 
massive surge in meta-surface technology business in the 
coming years. To facilitate this shift, it is crucial to employ 
accurate simulations of optical meta-surfaces and to develop 
innovative design approaches. 

Due to the relatively large dimensions (mm) of these optical 
systems and the fact that the diffraction patterns are sub-
wavelength, well known Electromagnetic simulation 
techniques based on Finite Difference Time Domain (FDTD) 
can sometimes be very delicate to implement. For this reason, 
alternative approaches based on neural networks prove to be 

very effective and make the simulation of large meta-surfaces 
possible. After a brief overview of the limitations of the pillar-
wise and FDTD based simulations, we will present our recent 
advancements in the field of Neural-network-based emulation 
of large meta-surfaces. 

The test cases presented in this paper focus on meta-diffusers, 
but the methods used to design these structures are more 
general and can apply to different types of meta-surfaces.  

II. PERIODIC PILLAR-WISE LIBRARY 

Meta-surfaces' adaptability enables versatile designs, and it is 

possible to obtain a ‘nearly’ local phase shift (of an incident 

wave) at the sub-wavelength scale. Indeed, under each 

diffractive element (typically pillars of high permittivity 

embedded in a medium of lower permittivity), the incident 

wave undergoes a phase shift proportional to the width of the 

latter. A widely used strategy to link the local phase shift 

below the pillar with its width consists of the use of a look-

up table in which the phase below the pillar is tabulated as a 

function of the width. In general, electromagnetic simulations 

are performed using a periodic unit-cell composed of a single 

pillar. The phase and the transmission as a function of the 

(normalized) pillar widths are shown in Figure 1 a) for a light 

angle of zero degree. Results are obtained using a commercial 

3D-FDTD solver [4]. The phase exhibits a nearly 

monotonous increase and the transmission remains high apart 

from narrow drops at well-defined pillar widths. The situation 

is more complex when the incident light exhibits a non-zero 

angle as testified by  Figure 1 b). This is further exemplified 

in Figure 2 where we see that depending on the width of the 

pillar, the structure of the transmission under the meta-

surface can be extremely complex. 
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a)            

b)  

 
Figure 1:  Typical Phase and Transmission for a periodic (of period 

a) meta-surface composed of identical semiconductor pillars of 

width (w) embedded in glass: with an incident light wave length of 

940nm, a) at zero degree and b) at 16 degrees (both light 

polarizations are shown). 

 

As has often been discussed (and sometime referred to as 

non-local effects [1]), resonances leading to discontinuous 

phase-width relations and abrupt transmission drops, can 

occur for well-defined values of the width of the pillars and 

can be inferred from a coupling between the incident light and 

transversally-propagating modes. Such coupling occurs when 

the meta-surface is purely periodic (and composed of 

rigorously identical pillars). Except in particular ‘non-local’ 

systems where resonances are researched, such as in band-

pass filters, in meta-lens and beam-shapers, this is generally 

not the case, and such resonances are likely not to occur (see 

later).  

 

 
Figure 2:  2-D maps of the Transmission for two different  pillars of 

normalized widths; a) w/a=0.256 and b) w/a=0.728. Same periodic 

meta-surface (of period a) as in Figure 1 for transverse-electric-

polarization. 

 

 

 

 
Figure 3:  Theoretical phase shift map (128*128 pillars) obtained 

using a Gerchberg-Saxton-like algorithm [5] in order to target in the 

far field the arbitrary shape shown in Figure 8 b). 

 

 

Figure 3 shows the theoretical phase shift obtained using a 

Gerchberg-Saxton-like algorithm [5] in order to target in the 

far field the arbitrary poly-shape shown in Figure 8 b). From 

this phase shift map and using the lock-up table shown in 

Figure 1 a), a pillar radius map (or width map) can be 

extracted. We note, incidentally, that due to the discontinuity 

in the Phase-width relationship, such a ‘mapping’ function 

can be ambiguous, and several width values can be extracted 

for the same phase shift target. Such a situation can lead to a 

deterioration of the optical performance of the design as 

shown in Figure 4. The exact same design of a beam shaper is 

mapped using either the (discontinuous) periodic pillar-wise 

library or using the (continuous) function related to a random 

structure shown in Figure 6. As can be seen the far field (1 

meter from the meta-diffuser) exhibits a significant zeroth-

order (characterized by an intensity maximum at normal 

incidence) when a purely period mapping function is used. 

This is not the case with the later continuous function. 

 

 
Figure 4:  Far field intensity as a function of the pillar index for two 

meta-diffusers in which the design (the near field phase-shift) is 

mapped using two different funtions (see texte for detail).  
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III. A STOCHASTIC APPROACH TO DESIGN BEYOND 

PERIODIC PILLAR-WISE LIBRARY 

To assess the impact of the design on the phase below each 

pillar, we constructed a large dataset of pseudo-random 

radius maps with varying correlation lengths. The correlation 

length, indicating the smoothness of radius transitions 

between adjacent pillars, is given by dcorr=N*σ, where σ is 

the gaussian perturbation's standard deviation and N is the 

number of pillars along the x-directions and the y-directions. 

Figure 5 shows the FDTD near field phase at 50nm from the 

meta-surface for two pseudo-random radius maps with a) 

small and b) larger correlation lengths. The meta-surface is 

illuminated under a normal, monochromatic (940nm), 

transverse-electric-polarized beam. 

 
Figure 5:  FDTD near field phase at 50nm from the meta-surface for 

two pseudo-random radius maps with a) small and b) larger 

correlation lengths. 

 

The ‘local’ local phase below the pillar is then extracted 

averaging the FDTD results on the unit-cell around each 

pillar. We found out that the relationship between the radius 

of a pillar and the induced local phase change is influenced 

not only by the parameters of the pillar itself but also by the 

presence of other pillars nearby. Figure 6 shows the average 

phase and the transmission as a function of the width below 

the pillars for various pseudo-random structures. This puts 

forth how neighboring pillars affect a specific individual 

pillar local phase and transmission. It is also noted that the 

resonance amplitudes diminish as the correlation lengths 

increase. Based on this stochastic analysis of the system a 

more relevant lock-up table can be built and used instead of 

the purely periodic one (see Figure 4). 

 
Figure 6:  Average phase and transmission as a function of the 

pillar width for different pseudo-random structures. 

IV. EMULATING THE META-SURFACE NEAR FIELD WITH A 

RESNEXT 

From a detailed study of the previously mentioned pseudo-

random structures we found out that the influence of 

neighboring pillars on the local phase below a pillar is 

complex and can exhibit a long range of interaction (typical 

up to several tenth of pillars). A possible way to handle such 

a complexity, in a more accurate way than the previous 

stochastic model, consists in using convolutional neural 

networks (CNN) [6]. To perform such a model, a large 

database (>10k elements) of 20x20 crops of realistic meta-

lenses and meta-diffusers is build. The database is composed 

of 2D images of the electric field 50 nanometers after the 

meta-surface. In the present meta-surface, the pillars are 

arranged at half-wavelength intervals. A resolution of one 

pixel per half wavelength is sufficient to calculate the entire 

far field according to the Nyquist criterion for propagating 

waves. The high-resolution near field produced by the FDTD 

solver is subsequently down-sampled by means of filtering 

the high-frequency spatial components. The benefits of this 

down-sampling are twofold. It reduces the neural network's 

output size by more than 400 times. Additionally, it allows 

for the use of smaller kernels in the convolutional neural 

network while maintaining the same physical receptive field 

size (i.e. the maximum distance from which a kernel can 

receive information from other pixels).   

We found out that ResNeXt architecture [7], originally 

designed for image-centric input and output, excels in 

learning the complex patterns of the meta-surface near field 

more efficiently than Skip-CNN. We believe that its deeper 

emulated network structure and its parallel convolutional 

pathways enhance feature extraction, which appears to be 

crucial for interpreting electromagnetic data.  A pictural 

illustration of the network is shown in Figure 7. The inputs are 

the width maps and the outputs are the near fields split into 

two distinct real and imaginary channels. The layers are 

periodic in order to account for the periodic boundary 

condition used in the FDTD simulations. 

 
Figure 7:   ResNeXt composed of 30 blocks (�,  �,  �� ) , with size of 

k=20, and filter number �� = 128 for all blocks. A block is detailed. 

The inputs are the width maps, and the outputs are the near fields 

split into two distinct real and imaginary channels. 
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Figure 8:  Two beam shapers with arbitrary random poly-shapes 

(designs with 128*128 pillars). The Far field modulous is calculated 

using FDTD, pillar-wise library (Model 0), and ResNeXt (Model 1). 

Arrows indicate non-negligeable zeroth orders. 

 

 One of the fascinating characteristics of these periodic 

convolutional neural networks is that they are not limited by 

the size of the training databases’ inputs and outputs. They 

can be trained using matrices of a certain size and 

subsequently make predictions on larger matrices. As 

mentioned, the networks are trained using the previously 

mentioned 20x20 matrices, but they are then capable of 

predicting the near field for input matrices that are e.g. 

128x128 in size as testified in Figure 8 and Figure 9. 

 

  
Figure 9:  2D-cuts along the x-direction of Figure 8.  Arrows point 

out zeroth orders. Design 1 and 2 refer to the left and right colomns 

in Figure 8. Other legends read the same way as in Figure 8. 

 

Two designs producing far fields of arbitrary shapes have 

been simulated respectively with a) and d) FDTD, b) and e) 

the library model, and c) and f) the present ResNeXt model. 

If the general shape of the far field is identical for all models, 

the predictions of the zeroth orders are nevertheless different 

depending on the model. In particular, and as can be seen on 

the transverse cuts of the far field (Figure 9), FDTD and 

ResNeXt model are aligned concerning the existence of a 

non-zero zeroth order while the library predicts its complete 

absence. It is worth mentioning that the simulation time of a 

CNN is significantly smaller than for FDTD: typically, a 

128x128 design takes only a few seconds on a single-core 

machine, while it requires about 10 hours on a recent 15 cores 

CPU system. 

 

V. CONCLUSIONS 

The present results demonstrate the importance of precise 

modeling of the effect of the interaction between the pillars 

and allows during the design verification phases to eliminate 

diffusers designs that present an excessively high zero order.  

The use of CNN allows predicting the optical behavior of 

meta-diffusers or meta-lenses with sufficient precision while 

maintaining a satisfactory CPU execution time. These results 

is nevertheless more general and the same methodology can 

be applied to different structures such as polarized meta-

structures featuring asymmetric pillars or resonating filters. 
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