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Abstract—The gate-drain capacitance (CGD) affects the input
and output impedance of transistors, necessitating designers to
consider it for proper matching and interfacing with other circuit
elements. For Laterally Diffused Metal-Oxide-Semiconductor
(LDMOS) transistors, the drift region overlap capacitance is
a key contributor to CGD. CGD gradually decreases with drain
voltage (VD) and eventually saturates. However, before saturating,
we observe a stepped decline in CGD at higher VD. This article
provides physical insights into this step reduction of capacitance
using Technology Computer-Aided Design (TCAD) simulations.
Using the industry-standard BSIM-BULK model as a framework,
we present an improved overlap capacitance model and validate
it against measured LDMOS characteristics.

Index Terms—BSIM-BULK, overlap, CGD, and LDMOS.

I. INTRODUCTION

LDMOS transistors are fundamental to circuits such as
power amplifiers, switch-mode power supplies, and other
electronic applications [1]–[4]. Fig. 1 (a) shows a simple
schematic of an n-LDMOS transistor where a lightly doped
n-drift region is connected between the gate edge and the
drain terminal to sustain a high drain voltage (VD). In BSIM-
BULK, the drift region is modeled as a bias-dependent drift
resistance (Rdrift) connected between nodes Di and Di1 as
shown in the equivalent circuit diagram Fig. 1 (b) [5]. Rd and
Rs are the drain and source contact resistances respectively.

The drift region has two distinct regions: one under the
thin gate oxide (Lov) and the other under a thick oxide.
The BSIM-BULK model, based on a physical charge-based

core, calculates the capacitance of the intrinsic MOSFET
and gate overlap drift region separately [6]. The capacitance
equivalent of the LDMOS transistor is shown in Fig. 1 (c).
In the absence of an inversion layer in the OFF state, the
contribution of the intrinsic capacitance becomes negligible,
and the overlap capacitance dominates. CGSO and CGDO
denote the overlap capacitance contribution of the Lightly
Doped Source/Drain (LDD) region, while CGDOV is the
overlap capacitance contribution from the gate overlap on
the drift region under the thin gate oxide. The gate-to-drain
overlap capacitance in LDMOS transistors impacts the high-
frequency response, the linearity of the power amplifiers,
and the switching speed of the device. Therefore, accurate
modeling of the overlap capacitance is essential for state-of-
the-art technology [7], [8]. The existing BSIM-BULK model
accurately captures the overlap capacitance due to the LDD
region in low voltage MOSFETs [9]. Still, the existing overlap
capacitance model of the drift region in BSIM-BULK does
not capture the measured characteristics. With the application
of VD, CGD gradually decreases and eventually saturates in
the case of an LDD MOSFET. In our previous work [10],
we provided a physical explanation and presented a compact
model that accurately captures the capacitance under different
bias conditions. However, in the case of an LDMOS transistor,
the applied VD is high, and we observe a step-like behavior in
CGD before it gets saturated. Numerous studies have focused
on the capacitance behavior of the LDMOS transistor without

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

im
ul

at
io

n 
of

 S
em

ic
on

du
ct

or
 P

ro
ce

ss
es

 a
nd

 D
ev

ic
es

 (S
IS

PA
D)

 |
 9

79
-8

-3
31

5-
16

35
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

SI
SP

AD
62

62
6.

20
24

.1
07

32
95

3

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 07,2024 at 14:06:59 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. (a) Simple schematic of an n-LDMOS transistor, (b) Its
equivalent circuit. (c) Capacitance equivalent of an LDMOS transistor
for both intrinsic and extrinsic MOSFET.

discussing the step behavior in CGD or the underlying physics
that explains the phenomenon [11]–[13]. In [14], the step
behavior is modeled by limiting the applied VDG. An overlap
capacitance model is presented in [15], but the step behavior
in CGD is not discussed. To bridge this gap, we present an
improved gate overlap drift region capacitance model that
accurately captures the capacitance behavior at high voltages
under the BSIM-BULK framework.

II. ANALYSIS OF THE EXISTING MODEL

The gate-drain capacitance contribution due to the drift
region is determined by the gate overlap drift length (Lov),
which undergoes accumulation, depletion, or inversion de-
pending on the applied gate and drain voltage. The overlap
charge due to drift region is given by (1) [6], [9]. In BSIM-
BULK, Lov is defined as a model parameter LOV ER, Cox is
the oxide capacitance, and Vt is the thermal voltage. qdrift is the
inversion and accumulation charge below the gate overlap of
the drift region that is determined, as in the core BSIM-BULK
model, by analytically solving Ψp,drift from (2). Ψp,drift
is the normalized pinch off potential. Vfb,drift is the flatband

voltage of the drift region, and VFBOV is a model parameter
to tune Vfb,drift.

QGDOV = W · LOV ER · Cox · V t · qdrift (1)

V fb, drift = Ψp,drift −γ ·
√

e−Ψp,drift − 1 + Ψp,drift (2)

V fb, drift =
V G, D − V FBOV

Vt
(3)

γ =
2 · q · ϵ ·NDR

Cox ·
√
Vt

(4)

qdrift, inv = 2 · nq · qinversion (5)

qdrift, acc = V fb, drift −Ψp,drift −2 · nq · qinversion (6)

The inversion, depletion and accumulation charge is then given
by (5) and (6). From the above equations, we conclude that
the depletion charge in the drift region increases with VD,
the rate of change of QGDOV slows down, and CGD gradually
decreases with VD. But, the existing model does not have the
step decline in CGD with VD as observed in the measured
data. We performed 2-D numerical device simulations using
TCAD on the LDMOS FET structure, as shown in Fig. 2
(a), to understand the physics behind the abrupt change in
CGD. In Fig. 2 (b), a depletion region forms below the gate
at the N-drift and P-substrate junction at moderate VD. If the
applied VD is further increased, the drift region is depleted
and extends beyond the gate overlap length, as shown in Fig. 2
(c). From TCAD analysis, we infer that the depletion charge
moves beyond the gate overlap as VD increases. This reduces
the contribution of the accumulation region (under the overlap
gate length (LOV ER)) to the gate-drain capacitance. As a
result, we see a sudden drop in CGD with a steep slope as
shown in Fig. 3.

III. MODELING OF STEP CAPACITANCE BEHAVIOR

Fig. 4 schematically highlights the depletion region under
the gate overlap length. When a moderate VD is applied, the
depletion region D1 below the gate overlap extends up to Xn1.
Further increase in VD extends the depletion region D2 beyond
gate overlap length upto Xn2. The depletion width Wdep,dr
can be expressed as (7), where NDr, Nsub are the drift and
substrate region doping concentration, respectively. Vbi,dr is
the built-in voltage for the drift and substrate junction, ϵs is
the silicon permittivity, and q is the electronic charge. With
the doping concentration in the drift region being less than
the substrate, the depletion width primarily extends in the drift
region and moves beyond the gate overlap length (LOV ER)
with increasing V D.

W dep,dr =

√
2 · εs · (V D + V bi,dr)

q
·
( 1

NDr
+

1

N sub

)
(7)

This reduces the effective contribution of the accumulation
region (LOV ER) to the gate-drain capacitance. We then
model the modified overlap gate length as (8), correctly
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Fig. 2. Shows 2-D Numerical device simulation contour plots (a) LDMOS FET structure on which TCAD simulations are performed, (b)
Moderate VD is applied in OFF state, due to which depletion region is generated at the P substrate and N drift junction, (c) as higher VD
is applied, further depletion occurs in the lightly doped N drift region which goes beyond gate overlap length on the drift side.

Fig. 3. Shows the step behavior observed during TCAD analysis in
the CGD vs. VD at high VD as soon as the depletion region goes
beyond the gate overlap length.

Fig. 4. Shows the schematic of depletion region extension in the drift
region as the applied drain bias is increased.

explaining the charge contribution under the gate overlap
length.

Lov,new = LOV ER−W dep,dr (8)

Lov,new = LOV ER · (1− LOV ER1 ·
√

V D + V bi,dr) (9)

The coefficient of the depletion width extension is defined by
the model parameter LOV ER1. After rearranging (8) and (9),
the new gate overlap length, which is restricted to be a positive
value, is given by (10). Parameter LOV ER2 is introduced to
make the model flexible enough to capture CGD across varying
LDMOS structures.

Lov,new = LOV ER·(1−(LOV ER1·
√

V D + V bi,dr−LOV ER2))
(10)

The modified gate-to-drain overlap charge that accurately
captures the capacitance is given as:

QGDOVnew = W · Lov,new · Cox · V t · qdrift (11)

The developed model accurately captures the measurement
characteristics of two different width devices as shown in
Fig. 5 and Fig. 6

CONCLUSIONS

We observed the step behavior in the capacitance of LD-
MOS transistors when operated at very high drain voltages.
TCAD analysis is performed to study the underlying physics.
We then presented a physics-based compact model under the
BSIM-BULK framework, accurately capturing the measure-
ment results.
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Fig. 5. Model validation with the measured data for narrow width
device (a) shows CGD vs normalized VD in OFF state for both existing
(green) and proposed model (blue) and, (b) shows all Capacitance vs
VG at VD = 0V.
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