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Abstract—This paper presents a positive-preserving, stable
finite element scheme for the density-gradient (DG) model. An ef-
ficient Newton-Krylov solver is designed to address the nonlinear
coupled discrete system. Simulation results for gate-all-around
(GAA) devices demonstrate the robustness and effectiveness of
the proposed scheme. Notably, the simulation time using our
method is only half that of the Sentaurus Device, highlighting its
superior computational efficiency.

Index Terms—Density-gradient model, Finite element method,
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I. INTRODUCTION

As modern semiconductor devices shrink to nanometer
sizes, quantum mechanical effects become increasingly sig-
nificant and must be considered in numerical simulations.
The density-gradient (DG) model [1], [2], a macroscopic
quantum equation, offers a computationally efficient alterna-
tive to directly solving the microscopic quantum Schrodinger
equation. It is widely preferred in the industry due to its lower
computational costs.

The finite element (FE) method is well-suited for solving
problems with complex geometries, constructing high-order
formulations, and enabling adaptive computation. Investigating
numerical discretization methods for DG model within the
finite element framework is of great academic and practical
importance [3]. Additionally, three-dimensional device sim-
ulations require considerable computational time and mem-
ory resources. Techniques such as message-passing interface
(MPI) parallel programming based on distributed memory
and preconditioned Krylov subspace iterative methods [4] are
crucial for managing these demands.

In this work, we propose a finite element framework for
solving the DG model, develop a highly scalable MPI-based
parallel solver, and implement simulations for GAA devices.
This framework aims to provide a robust and efficient tool
for addressing the computational challenges associated with
modern semiconductor device simulations.

II. METHODS
A. Physical Model and Exponential Transform

We split the fourth-order equations in the DG model into
two second-order equations. Consequently, the static DG

model can be regarded as a strongly coupled system com-
prising five nonlinear elliptic equations as outlined below:

V- (Vo) = —q(p—n+ D),
Vo (=qunnV (¢ + Gn) + ¢DVn) = qR,
V - (—=quppV (¢ + Gp) — ¢D,Vp) = —qR,

1.
Gn = NG div (26, V/n),

1
G, = —d (2b,V\/D) ,

where ¢ is the electrostatic potential, n and p are the electron
and hole densities, G,, and G, are the quantum potentials for
electrons and holes, ¢ is the electronic charge, € is the dielectric
constant of the material, D and R are the doping proﬁlze and
the net recombination rate, and b,, = 1’5;::; , by = I;‘;m; are
the density-gradient coefficients.

To preserve the positivity of numerical carrier densities, an
exponential transformation of veriables n/n; = e?¥~, p/n; =
e2¥r are employed [5], [6]. The DG model can be rewritten
in the following form:

-V - (Vo) = q(niewl’ —ne?¥r + D), @

V- (nni€®¥"Vo,) = —R, )
V- (upnie?¥*Ve,) = R, (3)
V- (26,Ve') = ¥ (¢ — & + 2Vinthn), (4

—V - (2b,Ve¥?) = 7 (¢ — ¢ — 2Vinthy), (5)

where ¢, and ¢, are the electron and hole quasi-Fermi
potentials.

B. Finite Element Discretization

The solutions of (1)-(5) are approximate in the linear La-
grange element space [7]. The poisson equation is discretized
using the traditional Galerkin finite element method. To de-
scretize the DG equations (4)-(5), we propose an interpolated-
exponential finite element (IEFE) scheme. Considering only
electrons, the IEFE scheme for (4) is given by

—QbR(Vﬂ'h(eW), Vo) = (ew"((bn — ¢+ 2Vipthy),v) 1
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where 7p,(+) is the linear finite element interpolation, v is the
test function, (u,v) = [, uvdz represents the inner product
on L?(2), and (-, )7 is the discrete inner product defined as

d+1
1
= Klu(z;)o(z:), d = 1,2,3.
(10 = 77 E Y IKlu(eio(en), d=1,23

For the current continuity equations (2)-(3), we apply the
edge-averaged finite elemnt (EAFE) discretization [8]. For
electrons, the EAFE scheme for (2) is formulated as

> Y ( /K Vbag - Vbag ) Ap(nni)dpéndso = (R,v)

KeTn ECOK

where 7}, is a shape-regular tetrahedral mesh, b4 is the basis
function associated with vertex A, AP and AL are the
endpoints of edge E, dpv := v(AY) — v(AF) and

Ag(a) = (é/Eal)l

with |E| representing the length of edge E. This method
aims to approximate an advective-diffusive flux using a piece-
wise constant flux vector on each element, and it has been
demonstrated to be equivalent to the finite volume Scharfetter-
Gummel (FVSG) scheme.

C. Newton-Krylov Solver

To address the inherent nonlinearity, we propose a Newton
method for solving the nonlinear discrete coupled system.
This solver focuses on computing the corrections du to the
solution u of the aforementioned nonlinear finite element
discrete system. Subsequently, the solution w is updated with
a damping factor 0 < o < 1,

U — u+ adu,

ensuring stability and convergence.

At each Newton iteration step, it is necessary to solve a
large-scale, asymmetric, indefinite linear equation system. For
this task, we employ the algebraic multigrid (AMG) [9] pre-
conditioned flexible generalized minimal residual (FGMRES)
[10] solver, which dramatically enhances the efficiency of
simulations. Unlike geometric multigrid, AMG constructs a
hierarchy of grids algebraically from the matrix representing
the linear system. These grids are derived from the matrix’s
structure rather than corresponding to any physical space,
thereby increasing the robustness of multigrid methods in
practical applications. Nonetheless, the parameters involved
in AMG need to be delicately tuned to achieve optimal
performance.

ITI. RESULTS
A. Simulation of a Single Channel GAAFET

To evaluate the performance of our proposed finite element
discretization scheme for the DG model, we first consider
an n-type 10nm gate length single channel GAAFET as
illustrated in Fig. 1(a) [11], with source and drain defined by
two 5x5nm contacts. We select a finite element discretization

mesh consisting of 2,734,080 tetrahedra, as shown in Fig.
1(b). To maintain the monotonicity of the scheme, the interior
angle between any two faces of each tetrahedral element is
constrained to be less than or equal to 7/2 [8].

Figure 2(a) compares the Ip-V characteristics using the
drift-diffusion (DD) model and the DG model, at both low
and high drain voltages of 0.05V and 0.7V, respectively. The
electron density in the OFF and ON states across the channel
is depicted in Fig. 3(a)-3(b). Figure 2(b) presents the Ip—Vp
characteristics for different source-to-gate bias voltages. It is
important to note that the specific values are less critical
for our purposes, as our primary objective is to demonstrate
the numerical stability of our scheme rather than to produce
physically meaningful results.
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Fig. 1. (a) Structure of the n-type single channel GAAFET. (b) Tetrahedral
mesh partitioning with 2,734,080 elements. (c) Tetrahedral mesh partitioning
with 42,720 elements.
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Fig. 2. (a) Ip-V characteristics obtained with the DG and DD model at
Vp =0.05V, 0.7V. (b) Ip-Vp characteristics obtained with the DG model
at different V.
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Fig. 3. Electron density along a cross-section perpendicular to the channel:
(@ Vp =0.05V,Vg=0V.(b) Vp =0.05V, Vg =15V.
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To demonstrate the stability of the discretization scheme
and the efficiency of the linear iterative solver, we present
the number of Newton iterations (with a relative tolerance,
rtol = le—>5) and the average number of FGMRES iterations
(with a absolute tolerance, atol = le — 15) at each bias
step (fixed 0.05V) in Fig. 4 and Fig. 5. As illustrated in
these figures, the number of iterations does not significantly
increase as the drain bias Vp ramped. Figure 6 shows the
electron density along a line across the channel, utilizing
meshes successively refined from a coarse mesh with 42,720
tetrahedra (refer to Fig. 1(c)). This figure demonstrates that the
numerical solution has converged, indicating that the results
are accurate, reliable, and independent of the discretization
parameters. Figure 7 depicts the strong scalability of our
MPI-based parallel simulator in obtaining the Ip-Vg curve,
showcasing the effectiveness of our approach in large-scale
simulations.
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Fig. 4. Numbers of Newton iterations for increasing Vp and V. Setting
relative error rtol = le — 5, the convergence criterion is reached after 2 ~ 3
iterations.
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Fig. 5. Average number of FGMRES iterations in a Newton step for increasing
Vp and Vi (setting absolute error atol = le — 15).
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Fig. 6. Electron density along a cross-line perpendicular to the channel under
different mesh refinements.
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Fig. 7. Total simulation time required to obtain the Ip-V( characteristic
under different MPI processes (2,734,080 tetrahedra).

B. Simulation of a Silicon Nanoslab (NS) FET

To validate the correctness and efficiency of our program,
we selected a 3nm technology node three-dimensional NMOS
silicon nanoslab FET provided by Sentaurus [12] as a bench-
mark example, as shown in Fig. 8(a). We use the same
mesh partitioning, comprising a total of 2,592,483 tetrahedral
elements, as illustrated in Fig. 8(b). The relative errors of the
Ip-Vg curves at drain biases of 0.05V and 0.7V were 12%
and 13%, respectively, as depicted in Fig. 9(a). Figure 9(b)
presents the time taken to compute the Ip-V curve using our
program and Sentaurus for different processes at Vp = 0.05 V.
The comparison of electron density with Sentaurus in the OFF
and ON states across the channel is depicted in Figs. 10(a)
and 10(b), demonstrating the accuracy and reliability of our
program in capturing the key characteristics of the device.
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Fig. 8. (a) Structure of the n-type NSFET provided by Sentaurus [12]. (b)
Tetrahedral mesh partitioning with 2,592,483 elements.
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Fig. 9. (a) Ip-V characteristics obtained from our program and Sentaurus
Device. (b) Total simulation time of the I -V characteristic under different
processes.
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Fig. 10. Electron density along a cross-section perpendicular to the channel:
(a) our method (right) vs. Sentaurus (left) at Vp = 0.7V, Vg = 0V. (b) our
mehtod (right) vs. Sentaurus (left) at Vp = 0.7V, Vg = 1.6 V.

IV. CONCLUSION

The FVSG scheme has long been recognized as the optimal
computational format for simulating semiconductor devices
using DD and DG models, with no finite element computa-
tional format known to rival it. In this work, we propose a
stable and efficient finite element framework for solving the
DG model, which is parameter-free and is also applicable to
the DD model. Our designed Newton-Krylov solver signifi-
cantly reduces the simulation time for each Newton iteration,
even with two million elements, to the order of 10 seconds.
This advancement demonstrates the framework’s robustness
and efficiency, offering a viable alternative to the traditional
FVSG scheme.
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