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Abstract—The increasing interest in artificial intelligence (AI)
and the limitations of general-purpose graphics processing units
(GPUs) have prompted the exploration of neuromorphic devices,
such as resistive random-access memory (ReRAM), for AI com-
putation. However, ReRAM devices exhibit various sources of
variability that impact their performance and reliability. In this
paper, we propose Device-Aware Training (DAT), a robust training
method that accounts for device-specific noise and resilience
against inherent variability in ReRAM devices. To address the sig-
nificant computational costs of noise-robust training, DAT employs
sharpness-aware minimization and a low-rank approximation of
the device-specific noise covariance matrix. This leads to efficient
computation and reduced training time while maintaining versatil-
ity across various model architectures and tasks. We evaluate our
method on CIFAR-10 and CIFAR-100 datasets, achieving a 38.2%
increase in test accuracy in the presence of analog noise and a
5.9x faster training time compared to using a full-rank covariance
matrix. From a loss landscape perspective, we provide insights
into addressing noise-induced challenges in the weight space. DAT
contributes to the development of reliable and high-performing
neuromorphic AI systems based on ReRAM technology.

Index Terms—Resistive random-access memory (ReRAM), Ro-
bust training, Neuromorphic AI systems

I. INTRODUCTION

The demand for efficient computational platforms for AI
models, driven by the rapid growth of these models and the
limitations in power efficiency and inference speed of traditional
GPUs, has led to the investigation of neuromorphic devices,
such as Resistive Random Access Memory (ReRAM), as viable
alternatives. These devices, while promising, exhibit consider-
able variability due to intrinsic factors, extrinsic factors, device
aging, and programming noise. This variability has direct im-
plications on their performance and reliability when employed
for AI applications. To ensure robustness and performance, it is
imperative that AI models trained on ReRAM devices take into
account these multiple sources of device-specific variability.

ReRAM devices display significant variability originating
from various sources, which directly impacts their operational
stability and effectiveness. This variability can arise from manu-
facturing irregularities causing differences between devices and
from programming noise, where identical set/reset pulses can
lead to different resistive states. Environmental factors, such
as thermal instability, can further influence device properties,
inducing unregulated changes in resistance states.

An additional source of complexity is resistance drift -
the gradual change of resistance under constant voltage or
after programming. Notably, within a crossbar array (CBA),
neighboring ReRAM cells might show more similar noise char-
acteristics due to shared local conditions and process-induced
variations, establishing a spatial noise correlation. Successfully
addressing these sources of variability is critical for ensuring the
robust and reliable operation of AI models on ReRAM-based
neuromorphic systems.
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In this paper, we present a robust training method, namely
Device-Aware Training (DAT), designed to address the com-
plex nature of device-specific noise and inherent variability
in ReRAM devices. Our approach encourages learning robust
representations capable of adapting to weight perturbations
based on each device’s unique noise characteristics. One key
aspect of DAT is its utilization of a comprehensive noise profile,
represented as a multivariate normal distribution with a full-
rank covariance matrix, which enables it to model the possible
correlations among the noise affecting each parameter.

Training AI models with high-dimensional noise represen-
tations poses significant computational challenges, especially
considering the trend towards larger foundation models in recent
AI research. The cost of training with the full-rank covariance
matrix scales as O(n3), which can be prohibitive as the number
of parameters increases. To address this, our method employs
optimization techniques such as sharpness-aware minimization
and efficient approximations. Specifically, we utilize the eigen-
structure of the covariance matrix to construct a low-rank
approximation, reducing the computational overhead typically
associated with full-rank covariance matrix noise profiles. As
a result, DAT offers a scalable solution while preserving key
aspects of the noise distribution. AI models trained using DAT
are thereby more robust, versatile, and suitable for a broad range
of model architectures and tasks. Consequently, DAT provides
an effective approach for training AI models on ReRAM devices
under realistic noise conditions.

II. RELATED WORK

A. Resilience to Noise in Training

The study by [1] explores the link between the flatness
of the weight loss landscape and robust generalization under
adversarial training, suggesting a dual-perturbation mechanism
for improved model performance. Meanwhile, [2] investigates
the benefits of noise injection as a regularization method,
proposing an approach that enhances robustness against adver-
sarial attacks. The theoretical examination by [3] suggests that
injecting artificial noise into training data introduces a form of
weighted ridge regularization, providing a deeper understanding
of this commonly used random perturbation technique. These
contributions highlight the importance and complexity of de-
veloping robust training strategies in noisy environments.

B. Loss Landscapes and Generalization

The behavior of loss landscapes and its relationship with
model generalization has been investigated in several works.
[4] emphasizes the crucial role of flat minima, noting their
significance in keeping loss low even when there are slight
shifts in the test environment. The study also suggests that
using smaller batch sizes can induce beneficial noise that aids in
avoiding sharp minima during training. Conversely, [5] proposes
that the generalization gap is more related to the limited number
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of updates rather than batch size, describing the process of
minimizing loss as a random walk influenced by mini-batch
noise. To help visualize these phenomena, [6] offers a novel
method to illustrate n-dimensional loss functions, emphasizing
the need to consider weight scale. Meanwhile, [7] highlights
the potential advantages of employing higher learning rates
to achieve flatter minima and enhance model generalization,
recommending the use of the highest tolerable learning rates to
prevent training loss from diverging.

C. Sharpness-Aware Minimization

Several advancements have been made to enhance optimiza-
tion algorithms with the focus on sharpness of the loss land-
scape. This includes the Sharpness-Aware Minimization (SAM)
by [8] and a similar approach by [9], both aiming to converge
towards minima that ensure low loss and sharper landscapes,
consequently improving generalization performance. Variants of
SAM like the one proposed by [10], not only maintain compa-
rable accuracy gains but also significantly reduce computational
overhead, thereby enabling efficient training of large-scale mod-
els. Additionally, [11] has demonstrated the effectiveness of
sharpness-aware strategies in improving the performance and
accuracy of model-agnostic meta-learning in few-shot learning
tasks. Lastly, [12] introduced adaptive sharpness-aware mini-
mization, which addresses sensitivity issues of sharpness mea-
sures and improves model generalization performance, further
validating these techniques’ relevance in different contexts.

D. Robust Training in Neuromorphic Devices

Several studies have addressed the challenges of enhancing
robustness in deep neural network (DNN) training for ReRAM-
based systems. [13] offers a characterization of both determin-
istic and stochastic noise in ReRAM crossbars. In parallel, [14]
examines noise-tolerant strategies across different levels, from
circuits and algorithms to entire systems. A distinct approach is
taken by [15], which focuses on the development of an analyti-
cal noise model that correlates device variability with parameter
noise. The investigation by [16] centers on the optimization of
binary weight mapping onto ReRAM crossbars, demonstrating
increased robustness against adversarial attacks. Lastly, [17]
proposes a solution to the issue of bitcell conductance variations
in crossbar-based in-memory architectures, achieving higher
storage density with minimal loss in DNN accuracy.

III. DEVICE-AWARE TRAINING

A. Noise Profile

The provision of a comprehensive noise profile is critical
for reliable and robust device operation, especially when these
devices are used for AI model deployments. In our experimental
setting, we assume this noise profile as a multivariate normal
distribution with a full-rank covariance matrix, symbolized
as N (µ,Σ). This assumption enables us to model potential
correlations among noises in ReRAM devices that affect each
parameter due to shared manufacturing processes, common
environmental conditions, and interdependent device properties.

This modeling approach, however, poses significant computa-
tional challenges. Training AI models with noise sampled from
N (µ,Σ) becomes computationally prohibitive as the number
of parameters increases, with the complexity of covariance
matrix decomposition scaling cubically with the number of
parameters (O(n3)). To address these computational challenges,
we propose Device-Aware Training (DAT), a novel technique
that efficiently integrates device-specific noise profiles into the
AI model training process. By employing cost-effective approx-
imations, DAT significantly reduces the computational overhead

associated with incorporating full-rank covariance matrix noise
profiles, thus facilitating scalable and robust AI model training
for ReRAM devices.

B. Method

The DAT approach, as outlined in Algorithm 1, is designed
to maximize efficiency and robustness in training AI models
on ReRAM devices. At the core of DAT lies a unique method
that extracts the principal noise components from a full-rank
covariance matrix. This reduces the computational complexity
from a high-dimensional n to a lower rank k, allowing for
efficient noise sampling during the training process.

Each training iteration in the DAT process involves sampling
a noise vector from these principal noise components and
adding it to the model parameters. The choice of the noise
vector is critical: the vector is selected such that the loss is
maximized in the direction of these components. This method-
ology forms the foundation of DAT’s optimization objective,
which is to identify and minimize the loss where it is most
perturbed along the major direction of the noise.

By customizing the training process to match the specific
noise characteristics of each device, DAT enhances robustness
against device-specific noise. Further, this approach helps re-
duce loss sharpness, thereby contributing to the overall ro-
bustness of the trained models. The utilization of sharpness-
aware minimization in this step ensures the model converges to
flatter, more robust minima, significantly improving the model’s
performance.

DAT’s adaptability is another key advantage. It can be molded
to fit a diverse range of model architectures and tasks, making
it versatile in the face of varying requirements. This feature,
along with the computational benefits offered by DAT, presents
an effective solution to the challenges of training AI models on
ReRAM devices under realistic noise conditions.

Algorithm 1 Device-Aware Training
1: Input: Device noise profile N(µ,Σ), loss function L(w);
2: Compute eigenvectors V k and diagonal matrix Dk corre-

sponding to the k largest eigenvalues of Σ, where k ≪ n;
3: Compute Ak = V kD

1
2

k ;
4: while not converged do
5: Sample minibatch B = {(xi,yi)}bi=1;
6: Compute gradient gt = ∇wLB(wt);
7: for j = 1, . . . , p do
8: Sample zj ∼ N (0, Ik); transform ηj = µ+Akzj ;
9: Compute projection ϵj =

gt·ηj

∥ηj∥2ηj ;

10: Perturb weights wj
t = wt + αϵj ;

11: Compute gradient at perturbed weight ∇L(wj
t );

12: end for
13: Aggregate the gradients: gavg = 1

p

∑p
j=1 ∇L(wj

t );
14: Update the weights: wt+1 = wt − βgavg;
15: t = t+ 1.
16: end while

C. Loss Landscape Visualization

We provide a visual representation of the loss landscape by
illustrating its behavior in weight space, as detailed below:

• 1D Plot:

g(α) =
1

n

n∑
i=1

ℓ (fw+αd (xi) , yi) ,

where α denotes the weight perturbation magnitude, and
d is sampled from a multivariate normal distribution
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(a) without noise (b) with noise profile of device A. (c) with noise profile of device B.

Fig. 1. 2D Loss Surfaces: Comparing Model Performance with Device-Specific Noise Profiles Training loss surfaces demonstrate model robustness (a)
without noise, (b) with the noise profile of device A, and (c) with the noise profile of device B. The model trained with DAT maintains low loss values, indicating
enhanced robustness under specific noise conditions.

TABLE I
IMPACT OF NOISE ON TRAIN/TEST ACCURACY FOR CIFAR-10 AND CIFAR-100 DATASETS

Model Method
CIFAR-10 CIFAR-100

Train Acc.
(wo/w noise)

Test Acc.
(wo/w noise)

Train time
(min.)

Train Acc.
(wo/w noise)

Test Acc.
(wo/w noise)

Train time
(min.)

CNN
(6-layer)

SGD 99.9/ 76.2 87.6/ 74.9 23.4 99.8/ 70.3 60.8/ 42.5 23.6
SGD-BN 99.9/ 92.5 90.2/ 83.7 23.2 99.8/ 92.7 66.4/ 61.3 23.3
DAT-Fast 99.9/ 94.3 90.5/ 86.4 24.0 99.8/ 95.9 66.5/ 65.6 25.7
DAT-Full 99.9/ 95.7 90.3/ 87.9 25.6 99.8/ 96.6 66.6/ 66.1 195.6

ResNet18

SGD 100.0/ 95.1 91.8/ 87.3 47.8 99.9/ 58.2 72.1/ 43.4 48.0
SGD-BN 100.0/ 95.9 95.3/ 89.6 47.3 99.9/ 94.4 77.6/ 70.8 47.7
DAT-Fast 100.0/ 98.3 95.2/ 93.0 53.0 99.9/ 97.1 77.7/ 75.6 54.6
DAT-Full 100.0/ 98.6 95.5/ 93.4 54.8 99.9/ 97.3 77.5/ 76.1 232.3

wo/w noise indicates accuracy measured without and with analog noise, respectively.

characterized by a specific device, and then normalized
by the Frobenius norm ∥d∥F .

• 2D Surface:

g(α, β) =
1

n

n∑
i=1

ℓ (fw+αu+βv (xi) , yi) ,

with w = wSGD, u = wDAT-A−wSGD, and v = 2wDAT-B−
wDAT-A−wSGD. wSGD denotes the SGD-trained model, and
wDAT-A and wDAT-B correspond to models trained with DAT
using the noise profiles of device A and B, respectively.
We plot g(α, β) over a grid with α ∈ [−0.5, 1.5] and β ∈
[−0.3, 0.8] to visualize the weight loss landscape.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experimental setup involved training on the CIFAR-
10 and CIFAR-100 datasets using both a 6-layer CNN and
ResNet18 architecture. We evaluated four different optimization
methods: SGD, SGD with batch normalization (SGD-BN), our
proposed DAT-Fast method, and the DAT-Full method. Each
model was trained for 200 epochs with a batch size of 128.
The learning rates were set at 0.015 for the CNN and 0.075
for ResNet, both with a weight decay of 2 × 10−4. We used
a learning rate scheduler that decayed the rate by a factor
of 0.8 every 10 epochs. The train and test loss, along with
accuracy, were measured using five different random seeds and
then averaged.

For noise injection, the DAT-Full method sampled noise from
N(µ, σ) for every iteration. In the DAT-Fast method, we used a
low-rank approximation with a rank of k = 10. For simplicity,
we performed one weight perturbation per iteration for each
gradient update step. It is important to note, however, that
the model’s robustness to noise could be further enhanced by

increasing the number of weight perturbations per iteration, at
the expense of increased computational time.

B. Performance Analysis

In experiments simulating the deployment of models on
ReRAM devices with distinct noise profiles, the DAT method
demonstrated enhanced robustness, as depicted in Fig.2. Eval-
uating 2D loss surfaces (Fig. 1) showed that models trained
with DAT maintained robust performance under different noise
profiles, emphasizing the importance of device-specific training.

Batch normalization’s effect on the loss landscape was signif-
icant, which could be attributed to its role in normalizing layer
inputs, thereby maintaining the stability of the network when
noise is introduced. Consistent with previous research, the im-
plementation of skip connections in ResNet promoted smoother
minimizers, effectively suppressing instability and enhancing
noise resistance [6]. While noise robust training employing full
covariance yielded a marginally flatter loss landscape, the DAT
method demonstrated comparable robustness.

The comparison of noise impacts on different datasets and
networks is detailed in Table I. Noise was injected into the last
fully connected layer for simplicity. While DAT-full exhibited
minor enhancements in noise robustness, its exponential rise in
computational complexity with an increase in parameters made
it less practical for larger models. Alternatively, DAT-Fast, our
proposed algorithm, maintained robustness and generalization
performance on par with DAT-Full, but with a training time
comparable to that of SGD.

Overall, DAT demonstrated superior performance over SGD,
enhancing the average test accuracy by 10.9% and 65.4% (for
CNN and ResNet18 respectively) on the CIFAR-10 and CIFAR-
100 datasets. The effectiveness of DAT was particularly notice-
able on CIFAR-100, a more complex task requiring a larger
number of parameters in the final fully connected layer, thereby
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increasing sensitivity to noise. Importantly, DAT-Fast managed
to match the robustness and generalization performance of DAT-
Full but with significantly reduced computational demands.
This is achieved by coupling a low-rank approximation of the
covariance matrix with minimizing loss landscape sharpness,
positioning DAT-Fast as an efficient solution for training larger
models.

(a) 6-layer CNN

(b) ResNet18

Fig. 2. Noise Robustness Evaluation with Diverse Architectures on
CIFAR10. The DAT method identifies flatter minima in noise directions for
both 6-layer CNN and ResNet18 architectures. Loss curves for ResNet exhibit
a broader shape due to the effect of skip-connections.

V. CONCLUSION

In this paper, we introduced DAT, a novel method designed
to address device-specific noise in AI models deployed on
ReRAM and other analog devices. Our experiments demon-
strated the effectiveness of DAT in noisy conditions, particularly
for classification tasks, where it facilitated significant accuracy
improvements despite the presence of noise. DAT leverages a
low-rank approximation of the covariance matrix and optimizes
the loss landscape, achieving a balance between computational
efficiency and robustness against variability. This resilience
is crucial considering the inherent variability characteristic of
neuromorphic devices. DAT’s scalability makes it particularly
suitable for training large AI models, addressing the compu-
tational challenges associated with these models. The results
of this study contribute to the advancement of reliable and
high-performing neuromorphic AI systems based on ReRAM
technology, and its implications extend to other analog devices.
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