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Abstract—We propose a compact model that utilizes 

physical-based artificial neural networks (ANNs) to model the 

effect of temperature on n- and p-type gate-all-around 

nanosheet FETs. Our compact model comprises two 

independent ANNs, where the first ANN is designed to output 

parameters related to temperature and the second ANN is 

utilized for the device physical parameters. All outputs of ANNs 

are integrated into a physical equation of drain current to form 

the entire compact model. Compared with the BSIM-CMG 

model in circuit simulations, our results are highly consistent in 

transfer characteristics and timing dynamics. 
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I. INTRODUCTION  

As semiconductor dimensions continue to shrink and 
structures become more complex, developing new CAD 
models and tools are increasingly difficult. The BSIM-CMG 
model requires a kind of methods to optimize over 600 
equations [1]. Instead of using a multitude of physical 
equations, recent studies were reported with the physical-
based single-ANN compact models [2], [3]. They can 
eliminate the need for laborious modifications of the physical 
equations for device models, but these studies have not 
considered the temperature effects yet. Temperature (T) is a 
crucial factor that affects the operation of chips [4]. High T 
increases carrier concentrations, leading to more leakage 
current. Thus, the temperature effect must be modeled in the 
ANN compact models. 

In this work, we advance the physical-based ANN model 
for N- and P-type GAA nanosheet (NS) MOSFETs, where the 
temperature effect is included. It comprises two independent 
ANNs, where the first ANN is designed to model the 
temperature dependent parameters and the second ANN is 
utilized for the physical parameters of devices. Key 
parameters: T, gate oxide thickness (EOT), fin height (HFIN), 
channel doping concentration (NBODY), and gate workfunction 
(PHIG) are considered in both ANN models. Characteristic 
variations are discussed for T ranging from -25 to 105 oC. 

II. MODEL ARCHITECTURE 

The known ANN compact models were designed using a 
single ANN [5], [6]; differing from the existing works, we 
construct our model by using two separate networks: ANN1 
and ANN2, as shown in Fig. 1. The output of our model, Ids, 
is given by the following equation: 

I�� = α ∙ β�T
 ∙ μ��T
 ∙ C�� ∙ �������� ∙ N��� ∙ V �V��, V��, V���T
�, 

(1) 

In (1), α and β(T) are temperature independent and 
dependent. µ0(T) is the temperature-dependent mobility,  

 β�T
 = 0.5 + 0.5 × tanh�ρ × V�� T⁄ 
, (2) 

 μ��T
 = φ √T + σ⁄ × √T. (3) 

Cox is oxide capacitance, Weff is width, Leff is length, and 
NFIN is the number of fins. V(Vgs, Vds, Vth(T)) is a value 
calculated from Vgs , Vds and Vth(T).  

 V �V��, V��, V���T
� = V�� × -V�� − V���T
 √T⁄ /, (4) 

where  

 
Fig. 1. An architecture of the ANN compact model includes a total of 
seven inputs, including Vgs, Vds, temperature, and four physical 
parameters. Two separate hidden layers are used to enhance the 
influence of temperature on the model and improve its accuracy. 
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TABLE I. LIST OF THE HYPERPARAMETERS OF THE ANN1 AND ANN2. 

ANN 1 ANN 2 

Parameters Values Parameters Values 

Hidden layers 4 Hidden layers 4 

Neurons 10, 10, 10, 10 Neurons 10, 10, 10, 10 

Epochs 1200 Epochs 1200 

Learning rate 0.01 Learning rate 0.01 

Scheduler StepLR Scheduler StepLR 

Activation function tanh 
Activation 
function 

tanh 

Loss function MSE Loss function MSE 

Input dimension (16,4) Input dimension (16,7) 

Output dimension (16,3) Output dimension (16,1) 

Optimizer SGD Optimizer SGD 
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 V���T
 = log-δ √T × EOT × Hfin⁄ /. (5) 

The hyperparameters of ANN1 and ANN2 are listed in 
Tab. I. The ANN1 is responsible for producing a temperature-
dependent function, while the ANN2 generates coefficients 
that are independent of temperature in (1). The four-layer 
ANN1 has four inputs: Vgs, Vds, T, as well as NBODY and three 
outputs: δ, ϕ, ρ and σ. These four values serve as parameters 
for the functions β(T), µ0(T) and Vth(T). By substituting T 
into (2), (3), and (5), the physically meaning parameters β, 
µ0 and Vth in (1) can be determined.  

We further construct the ANN2 with seven input nodes, 
four hidden layers, and one output. We utilize this output to 
obtain a correction term referred to as ε.  

 ε = 10� = α ∙ C�� ∙ �������� ∙ N���. (6) 

The input nodes comprise of Vgs, Vds, NBODY, T, EOT, HFIN, 
and PHIG. From (6), x is the output of ANN2, where we can 
obtain α, Cox, Weff, Leff and NFIN in (1). Due to a nonlinear 
nature of I–V curves, (6) allows the proposed ANN compact 

model to better capture the device characteristics. By 
combining the outputs from the ANNs, we can predict device 
characteristic under different biases and temperatures.  

III. RESULTS AND DISCUSSION 

The ANN compact model is trained using 200,000 data 
points sourced from the BSIM-CMG model at temperatures of 
-25 °C, 0 °C, 25 °C, 65 °C, and 105 °C. The input Vgs and Vds 
ranges are between 0 and 1 V in steps of 0.02 V. The loss 
function of the ANN compact model is given by:  

 
Z[ \ ∑ �I^,_���`
 − I^,�a�a[�`
 �[̀bZ +

∑ clog-I^,_���`
 / − log �I^,�a�a[�`
 �d × γ[̀bZ f. (7) 

In order to improve the ANN compact model accuracy, we 
integrate a logarithmic function into the loss function. In our 
experiment, we conduct multiple tests and find that our 
compact model trained with γ of 0.008 achieved the highest 
model accuracy. Figs. 2-3 and Figs. 4-5 show the model 
results of N/PMOS devices of different sizes under different 
temperatures, respectively. The blue symbols are the data 
generated by the BSIM-CMG model, and the red lines 

 
Fig. 2.  The NMOS modeling results at different temperatures, with EOT 

= 1 nm, HFIN = 30 nm, NBODY = 1×1022 m-3, PHIG = 4.61 eV, are 
presented for (a) Ids–Vgs at Vds = 0.5 V, (b) Ids–Vds at Vgs = 0.8 V, (c) gm–

Vgs at Vds = 0.5 V, and (d) gds–Vds at Vgs = 0.8 V, respectively. 
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Fig. 3.  The NMOS modeling results at different temperatures, with EOT 

= 1.5 nm, HFIN = 35 nm, NBODY = 1×1022 m-3, PHIG = 4.61 eV, are 
presented for (a) Ids–Vgs at Vds = 0.5 V, (b) Ids–Vds at Vgs = 0.8 V, (c) gm–

Vgs at Vds = 0.5 V, and (d) gds–Vds at Vgs = 0.8 V, respectively. 
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Fig. 4.  The PMOS modeling results at different temperatures, with EOT 

= 1 nm, HFIN = 30 nm, NBODY = 1×1022 m-3, PHIG = 4.61 eV, are 
presented for (a) Ids–Vgs at Vds = -0.5 V, (b) Ids–Vds at Vgs = -0.8 V, (c) 

gm–Vgs at Vds = -0.5 V, and (d) gds–Vds at Vgs = -0.8 V. 
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Fig. 5.  The PMOS modeling results at different temperatures, with EOT 

= 1.5 nm, HFIN = 35 nm, NBODY = 1×1022 m-3, PHIG = 4.61 eV, are 
presented for (a) Ids–Vgs at Vds = -0.5 V, (b) Ids–Vds at Vgs = -0.8 V, (c) 
gm–Vgs at Vds = -0.5 V, and (d) gds–Vds at Vgs = -0.8 V, respectively.  
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represent the modeling results of the ANN compact model. 
The physical-based ANN model, even without incorporating 
the calculation of the first derivative in the loss function, 
accurately captures the characteristics of Ids–Vgs, Ids–Vds, gm, 
and gds. To further evaluate its performance, we compare our 
compact model with a non-physically meaningful ANN 
compact model [7].  

Fig. 6 depicts an architectural of the non-physically 
meaningful compact model, while Fig. 7 illustrates the 
corresponding simulation results. Both models are trained on 
the same dataset and epochs. The non-physically meaningful 
compact model exhibited significant errors in Ids–Vgs, Ids–Vds, 
gm, and gds, with values of 1.57%, 1.66%, 8.44%, and 
88.95%, respectively. In contrast, our simulated results show 
much lower errors of 1.33%, 1.01%, 1.88%, and 2.12%. This 
demonstrates that our ANN model with physical meaning 
provides more accurate values for the first-order derivative 
and produces smoother curves in simulations across different 
temperatures. Due to the use of the Rectified Linear Unit 
(ReLU) as the activation function in the last layer of Fig. 6, it 
offers faster training time for the model. However, it fails to 
provide accurate results when the data gradient is large. 
Furthermore, the activation of neurons in the last layer is not 
guaranteed when inputs are less than zero. Therefore, the 
hyperbolic tangent (tanh) function is a preferable choice. 
Additionally, the temperature significantly affects the Ids. By 
incorporating various physical formulas related to Vgs, Vds 

TABLE II. COMPARE THE VTH AND SS EXTRACTED FROM PMOS DEVICES WITH DIFFERENT TESTING CASES USING THE ANN AND BSIM-CMG MODELS. 

Lg = 30 nm, HFIN = 35 nm, EOT = 1.0 nm,  
NBODY = 1×1022 m-3, PHIG = 4.61 eV 

Lg = 30 nm, HFIN = 30 nm, EOT = 1.0 nm,  
NBODY = 1×1023 m-3, PHIG = 4.61 eV 

T (°C) 
Vth (V) SS (mV/dec) Error (%) 

T (°C) 
Vth (V) SS (mV/dec) Error (%) 

BSIM Ours BSIM Ours Vth  SS  BSIM Ours BSIM Ours Vth  SS  

-25 -0.44 -0.44 50.25 50.28 0.451 0.060 -25 -0.451 -0.44 50.21 50.23 0.443 0.040 

0 -0.43 -0.42 55.32 55.44 0.465 0.217 0 -0.441 -0.44 55.28 55.35 0.227 0.127 

25 -0.43 -0.42 60.40 60.46 0.694 0.099 25 -0.443 -0.44 60.34 60.49 0.451 0.249 

65 -0.52 -0.52 68.63 68.75 0.570 0.175 65 -0.541 -0.53 68.44 68.47 0.370 0.044 

105 -0.49 -0.49 77.31 77.52 0.602 0.272 105 -0.514 -0.51 77.06 77.23 0.778 0.221 

 

TABLE III. COMPARING ANN MODELS FOR DEVICE CHARACTERIZATION: INPUT/OUTPUT PARAMETERS AND ANALYSIS. 

Model Ref. [6] Ref. [3] Ref. [10] Ref. [9] Ref. [7] This Work 

Input parameters 
Vgs ,Vds , Tox, 

HFIN, Nch, φM 
Vgs ,Vds 

Vgs ,Vds, LC, 
Tox, 

Vgs ,Vds, L, W 
Vg ,Vd, Vb , L, 

W, T 

Vgs ,Vds , EOT, HFIN, 
NBODY, PHIG, T 

Output parameters Ids ε Ids Ids Ids Ids 

Physical meaning No Yes No No No Yes 

First derivative 
simulation result 

No Yes No Yes No Yes 

Circuit simulaiton No No No Yes Yes Yes 

 

 
Fig. 6. An architecture of the conventional ANN compact model without 
physical meaning includes a total of seven inputs, including Vgs, Vds, 
temperature, and four physical parameters. 
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Fig. 7.  The NMOS simulation results using nonphysiscal-meaning ANN 
and BSIM CMG models at different T, with EOT = 1 nm, HFIN = 30 nm, 
NBODY = 1×1022 m-3, PHIG = 4.31 eV, are presented for (a) Ids-Vgs at 
Vds = 0.5 V, (b) Ids-Vds at Vgs = 0.8 V, (c) gm-Vgs at Vds = 0.5 V, and (d) 
gds-Vds at Vgs = 0.8 V, respectively. 
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Fig. 8.  The NMOS predictive simulation results using the physical-based 
ANN and BSIM CMG models at different T, with EOT = 1 nm, HFIN = 

30 nm, NBODY = 1×1022 m-3, PHIG = 4.31 eV, are presented for (a) Ids-
Vgs at Vds = 0.5 V, (b) Ids-Vds at Vgs = 0.8 V, (c) gm-Vgs at Vds = 0.5 V, and 
(d) gds-Vds at Vgs = 0.8 V, respectively. 
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and T into the model, rather than treating them solely as 
inputs, the differentiation at different temperatures does not 
need to be explicitly included in the loss function, resulting 
in highly accurate results. Fig. 8 shows the Ids predictions of 
an NMOS device at different T using the physical-based 
ANN compact model. Notably, even beyond the training 
temperature range of the ANN model, our model still yields 
highly accurate simulation results. The errors for Ids–Vgs, Ids–

Vds, gm, and gds, are 0.93%, 0.8%, 1.21%, and 2.27%, 
respectively, indicating the model’s ability to make accurate 
predictions outside the training range.  

Based on the characteristic of PMOS devices, we do 
calculate the threshold voltage (Vth,nn) and subthreshold 
swing (SSnn) in different T [8] and compared the results with 
Vth and SS obtained from the BSIM-CMG model in Tab. II. 
When T varies from -25 to 105°C, the errors are within 1%, 
except one at 2.4%. Tab. III compares our and recent models. 
Our model stands out with the highest number of input 
parameters, which indicates that the increased complexity in 
establishing an accurate model. Additionally, we observe that 
models with a physical meaning are capable of accurately 
simulating the first derivative values. While Ref. [9] lacks 
physical meaning, they incorporate the first derivative values 
in their loss function. The accuracy of the first derivative 
simulation directly impacts the accuracy of circuit 
simulation. Although Ref. [7] includes circuit simulation, the 
inaccurate first derivative simulation results in subpar circuit 
simulation performance. To evaluate the performance of the 
constructed ANN compact model in circuit simulation, we 
have converted the trained model into Verilog-A code and 
conducted circuit simulations using HSPICE® [9]. Fig. 9 
shows the circuit simulation of the CMOS inverter. The blue 
symbols represent the data generated by the BSIM-CMG 
model, the red lines are the modeling results of the ANN 
compact model, and the black line are the input voltage of the 
CMOS inverter. Figs. 9(c)-(d) show the variations of the 
output voltage during rise and fall at different temperatures, 
respectively. It can be clearly observed that the time required 
for voltage rise and fall gradually increased from short to long 
as the temperature increased from low to high, consistent with 
the results shown by the BSIM-CMG model. Tab. IV 
indicates that the errors in the simulated rise time (tr) and fall 
time (tf) between the BSIM-CMG and our models are both 
less than 4.2% and an average is at 1.76%. Our ANN model 
results indicate that higher temperatures lead to an increase in 
carrier concentration and diffusion velocity in the GAA NS 
channel, resulting in higher channel resistance and longer tr 
and tf. Through the results of devices modeling and circuits 
composed of multiple devices, it shows that the proposed NN 
modeling work can successfully simulate at different 
temperatures with engineering acceptable accuracy. 

IV. CONCLUSION 

In summary, we have developed a physical-based compact 
model using two independent four-layer ANN architectures 

for GAA NS FETs from -25 to 105°C. Compared with 
recently reported works, seven parameters: Vgs ,Vds , EOT, 
HFIN, NBODY, PHIG, T have been considered and validated 
in this work. Notably, the model was applied to various circuit 
simulations without any numerical divergence issues. 
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TABLE IV. RISE TIME (TR) AND FALL TIME (TF) OF A CMOS INVERTER. 

Lg = 30 nm, HFIN = 30 nm, EOT = 1.0 nm,  

NBODY = 1×1022 m-3, PHIG = 4.61 eV 

TEMP 

(°C ) 

tr (µs) tf (µs) Error (%) 

BSIM Ours BSIM Ours tr tf 

-25 131.4 133.2 141.5 139.2 1.36 -1.6 

0 147.3 153.5 158.1 160.2 4.20 1.32 

25 191.5 193.0 213.7 218.5 0.78 2.24 

65 318.0 324.2 319.9 322.3 1.94 0.75 

105 510.0 506.1 478.4 491.2 -0.8 2.67 

 
Fig. 9. Inverter simulation with our and the BSIM CMG models, 
where the devices are with EOT = 1 nm, HFIN = 30 nm, NBODY = 

1×1022 m-3, and PHIG = 4.61 eV. (a) Voltage transfer curves at 
different T, (b) Timing plots at different T. Zoom-in plots of timing 
variations, where (c) varies from 0.012 to 0.018 ms and (d) varies from 
0.062 and 0.067 ms in different T. 

(a) (b)

0.2

0.4

0.8

0.6

1.0

0 0.05 0.10 0.15 0.20

0 67 /HID  (0)

=6gq (ms)

V
DD

= 1V

V
in V

out

T = -25, 0, 25, 

65, 105 °C
0.2

0.4

0.8

0.60.6

1.0

0 HID  (0 )

067 (V)

0.2 0.4 0.6 0.80 1.0

Vout,our_model

Vout,BSIM_CMG

Vin

0.2

0.4

0.8

0.6

1.0

0.062 0.064 0.066

0 67 /HID  (0)

=6gq (ms)(d)

T = -25, 0, 25, 

65, 105 °C
0.2

0.4

0.8

0.6

1.0

0 67 /HID  (0 )

0.012 0.014 0.016 0.018=6gq (ms)(c)

T = -25, 

0, 25, 65, 

105 °C

>?= = h. A 7g4i;8 = jA 7g8k?lm = 1 × 1022 gnj :4;< = o. ph q0

288


