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Abstract— Modified autoencoders (AEs) have been used to 

capture the latent space physics of a given electrical 

characteristic curve (e.g. IV or CV). Therefore, it is expected 

that they can also be used to calibrate TCAD model parameters 

of novel materials such as Ga2O3 which is an emerging ultra-

wide-bandgap (UWBG) material. In this paper, we demonstrate 

the use of an AE to perform automatic TCAD parameter 

calibration (Philips Unified Mobility model (PhuMob)) in Ga2O3 

with 6 parameters. We also discuss a noise technique to improve 

calibration accuracy and an efficient training data generation 

method using Latin Hypercube Sampling (LHS). The machine 

is validated with unseen noisy curves to mimic experimental 

data. The PhuMob parameters extracted from the unseen 

curves are used in TCAD simulation and can reproduce the 

original curves with high accuracy (thus the calibration is 

successful). 
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I. INTRODUCTION 

CAD-augmented machine learning (ML) has been 

proposed in recent years to solve data scarcity issues in 

semiconductor ML [1][2]. It has been used to perform device 

characteristic predictions [3]-[6], inverse design [7]- [10], 

and surrogate model development [9][10]. By using 

accurately calibrated TCAD simulations, one may also 

generate enough data to train a machine to troubleshoot 

semiconductor manufacturing defects and analyze novel 

materials and devices, which have been demonstrated 

experimentally [11]-[15]. However, TCAD simulation data 

can easily generate an overfitted ML model (unless 

substantial domain expertise is used [4][5][14]) and cannot 

be applied to the experiment directly due to the noise and 

unknown variations in experimental data. Various skills have 

been proposed to solve this problem [8][14][15]. Among 

them, autoencoder (AE) is found to be very effective [8][14]. 

This is because an AE can capture and learn the latent physics 

of any given electrical characteristic curve [3] [8][11]. 

Therefore, it is expected that AE can also be used to 

perform TCAD model parameter extraction. Since each curve 

is generated based on a given set of parameter values, by 

training an AE using curves generated with various 

parameters, it is expected that the AE will be able to capture 

the latent physics (TCAD model) of the given curve and thus 

can be used to predict the parameters to reproduce a given 

experimental curve. In this paper, the Ga2O3 Schottky diode 

forward IV is used to calibrate Ga2O3 Philips Unified 

Mobility (PhuMob) model [16] and TCAD Sentaurus [17] is 

used for TCAD simulations. 

II. DATA GENERATION AND MACHINE LEARNING 

TCAD simulations are used to generate 20k forward IVs 
(0V to 4V) of a Ga2O3 Schottky diode (device structure and 
TCAD models can be found in [14]. For each simulation, we 
vary 6 parameters, the device temperature, �, and 5 PhuMob 
parameters ( ���� , ���� , �	
� , � , and  ) (Fig. 1). The 

parameters for each IV are sampled within the ranges given 
by Table I using Latin Hypercube Sampling (LHS), which will 
be discussed later. Each curve is discretized to 52 points. 80% 
and 20% of the data are used to train the model and for 
validation, respectively.  

The prediction model consists of two separately trained 
components, an undercomplete AE and a dense neural 
network. The AE has 9 layers, each having 52 (input layer), 
128, 64, 32, 10, 32, 64, 128, and 52 (output layer) nodes, 
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Fig. 1: Left: TCAD generated training data (A) (the split with added 
noise is shown, see Fig. 3). Middle: The Autoencoder framework 
used. Only the middle hidden layer is shown for clarity. The AE is 
trained using the blue path. The hidden variables are regressed against 
5 PhuMob parameters and T (bottom green paths). Parameter 
calibration is performed using the purple path followed by TCAD 

simulation (B) to validate the performance. 

TABLE I 

PARAMETER RANGES USED FOR DATASET GENERATION 
 

PARAMETER RANGE UNIT 

Min Max ����  22 2000 cm2/(Vs) ����  20 1810 cm2/(Vs) �	
�  1014 1020 cm-3 � 200 400 K � 1 5 1  1 5 1 
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respectively. There are 10 hidden nodes in the middle layer. 
In principle, only 6 or fewer hidden nodes are needed to 
capture the 6 variations in the latent space. However, 10 are 
used to speed up convergence to the global minimum during 
the AE training (blue path in Fig. 1).  

We first train the AE to reconstruct input IVs, forcing it to 
learn an efficient latent representation to minimize the 
reconstruction loss. We expect this latent representation to 
contain information about variable factors used to generate the 
IV, including the parameters we are interested in predicting. 
However, the learned latent space of an AE is often entangled, 
individual latent nodes can represent the aggregate effect of 
many different generative factors. Therefore, we use a second-
order regression model to make parameter predictions from 
the AE’s latent layer (green path in Fig. 1). Early results 
indicated that a dense neural network (with 4 hidden layers, 
each with 128 nodes) outperforms linear, polynomial, and K-
Nearest-Neighbors regression for this application. 

III. AUTO-CALIBRATION RESULT AND VALIDATION 

To mimic the effect of non-ideal measurements in the 
experiment, we corrupt the unseen validation IV data by 
introducing additive white Gaussian noise (AWGN) with a 
signal-to-noise ratio (SNR) of 35 dB. Fig. 2 shows one of the 

unseen noisy validation curves. The curve is fed into the 
machine to extract the 6 parameters which are then used to 
perform TCAD simulations. As can be seen, the machine has 
extracted the PhuMob parameters and T accurately enough 
that the TCAD simulation IV is close to the unseen noisy data 
both in the linear and logarithm scale. To study the statistical 
accuracy of the automatic TCAD parameter calibration, 185 
unseen noisy data have been tested. The R2 of the difference 
between the unseen IV (curves A in Fig. 1) and the TCAD 
simulation IV (curves B in Fig. 1) using the extracted 
parameters is 0.895 (Fig 3). 

IV. ACCURACY IMPROVEMENT WITH NOISE TECHNIQUE 

To further improve the accuracy of parameter extraction, 
noise with different SNRs (40 dB to 10dB) is added to the 
training curves to reduce overfitting. For the specific example 
in Fig. 2, it shows that when the noise is too large (SNR = 
20dB or 10dB), the prediction is worse at the high voltage 
level. However, statistically, adding noise improves the 
accuracy as shown in Fig. 3. The models trained on noisy data 
perform better, with the 40 dB SNR model performing best 
(with ��  ≈ 0.937, ~5% better than without noise). This 
robustness to noise is an important result when considering a 
model extension to experimental data, which often contains 
noise and non-ideality compared to TCAD setup (e.g. 
variation of WF and drift thickness).  

V. DISCUSSIONS 

Efficient Training Data Generation - We employ LHS to 
generate the parameters for each IV in our simulated dataset. 
LHS is an efficient sampling technique shown to decrease 
computational effort by up to 50% compared to conventional 
Monte Carlo methods in some applications [18]. In our 
context, LHS reduces the number of simulated training data 
required to adequately represent the parameter space ∈  ℝ� 
(as there are 6 parameters). Fig. 4 shows the mixture 
discrepancy, a measure of parameter space coverage [19], as 
a function of sample count using both LHS and parameters 
drawn from independent uniform distributions. LHS produces 
a more uniform parameter space on average, more so when the 
sample count is less than 2000. 

Use of Domain Expertise - The use of domain expertise 
can avoid the generation of unphysical data, aid interpretation 
of results, and improve calibration accuracy for certain regions 
of the parameter space. For example, from the physics point 

 
Fig. 4: Mixture discrepancy at the given number of samples across 
50 trials using LHS and uniform sampling. Lower is better as the 

ideal score is 0.  

 
Fig. 3: �� score across 185 TCAD simulated IVs using model 

parameters calibrated by the machine trained at given SNR 

compared to the unseen noisy data. 

 
Fig. 2: True unseen noisy IV curve (emulating experimental data) vs. 
TCAD simulated IV using TCAD parameters extracted by the AE trained 
with different SNR (no noise, 10dB, 20dB, 30dB, 40dB). Left: linear-scale. 

Right: log-scale.  
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of view, ���� � ���� . One may sample ����  and ���� 
independently and then discard samples that fail this criterion 
(independent sampling scheme). Consequently, the dataset’s ����  and ����  distributions skew heavily (

�����������������  ≈ 21), 

as seen in Fig. 5. As such, there are relatively few training data 
generated with low ���� , which could affect model 
performance on unseen data located in this underrepresented 
region. Instead, we sample the difference between ���� and ����, given one of the values (constrained sampling scheme). 
This allows us to generate parameter vectors within our 
constraint without discarding samples, which maintains LHS 

coverage and produces less skew (
�����������������  ≈ 4.5). 

Accuracy of Parameters Extraction - At first glance, the 
true versus predicted plot for ���� in Fig. 6(a) depicts poor 
results with R2 = 0.723. The outlier and inlier histograms for 
these ����  predictions (Fig. 6(b) and 6(c)) indicate a link 
between small �	
�  values and poor predictability. To 

understand this result we examine the PhuMob equations [16]. 

The PhuMob bulk electron mobility is given by: 

 �� �  �!" # �!$%&'()�
  (1) 

Given our TCAD setup, this can be approximated in terms 
of our parameters by: 

  �� � * �
!��� +,--.(/0 # �

1 23&45.-78-89:;< !=>
)�

 (2) 

Where: 

 �? � !���@
!��� ) !�AB  CD��E(DF)�.G

 (3) 

and, 

  �H � !���!�AB!��� ) !�AB  D��EC (�.G
. (4) 

The parameter �IJK varies by several orders of magnitude 

in the dataset and resides solely in �LM
N. When �IJK is large, 

the right-hand term in (1) tends to zero and the bulk mobility 
effectively equals the lattice scattering contribution, which is 

determined by ����. On the other hand, when �IJK is small, 

the carrier scattering dominates and ���� has little to no effect 
on total mobility. In the latter circumstance, it may be 
impossible for the machine to make an accurate ����  prediction. However, since ���� has no effect, it does 
not affect the TCAD IV simulation even if the prediction is 
inaccurate. 

To get a better idea of the model’s ����  prediction 
quality, we plot the percent error versus the evaluated partial 

 
Fig. 5: Independent sampling (top) and constrained sampling 

(bottom) dataset histograms for ���� and ����.  
 

 

Fig. 6: (a) True vs extracted plot for ���� in the 2000 validation IV. 
Predictions more than 150 cm2/Vs from truth are colored red, with the 
remaining ‘good’ predictions colored green. (b) �	
� histogram of the 

outlier (red) predictions. (c) �	
�  histogram of the inlier (green) 

predictions.   

 

 

Fig. 7: (a) Partial derivative of the bulk mobility �Owith respect to ����  versus the percent error of each ����  prediction in the 
validation set. (b) True versus predicted R2 for ���� as a function of 
threshold. 

. 
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derivative P Q�RQ����P for each point in the validation set in Fig. 

7(a). As the partial derivative approaches zero, ���� 
contributes less to the total mobility and predictions become 
increasingly worse. A more accurate assessment of the 
model’s performance is obtained by disregarding predictions 
where the mobility is unaffected by  ���� . Fig. 7(b) shows R2 
for ���� as a function of a threshold S, where data are ignored 

if P Q�RQ����P < S. With a relatively conservative threshold, S �1, R2 increases from 0.72 to 0.88. Fig. 8 shows the prediction 

of ����  for S � 1  (i.e. P Q�RQ����P < 1  are ignored) and the 

prediction is much better than those in Fig. 7(a). 

VI. CONCLUSIONS 

 We demonstrate the automatic TCAD calibration of 5 
PhuMob parameters and T, with our best model achieving �� 
≈ 0.937 by using a modified AE trained on TCAD data. This 
is the first time an AE has been successfully applied to extract 
6 parameters. The model is capable of calibrating noisy 
unseen data (emulating experimental data). It is found that by 
adding noise to the training data (SNR = 40dB), accuracy is 
improved by 5%. We implement an efficient method of 
parameter generation using LHS. We also find that the 
application of domain expertise can reduce the required size 
of training data and improve the performance of the machine. 
Furthermore, we justify our model’s prediction quality of ����  using the relevant PhuMob equations and propose an 
alternative metric. 
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Fig. 8: True vs extracted plot for ���� for P Q�RQ����P � 1. 
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