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Abstract—A machine learning (ML)-augmented TCAD frame-
work is proposed to build an adaptive density gradient (DG)
model for the ultra-scaled gate-all-around (GAA) devices. First, to
capture the impact of quantum confinement on Silicon nanowire
and nanosheet GAA FETs, the multi-subband k·p model is cali-
brated with the first-principles calculations. In parallel, a fully-
connected multi-layer neural network, i.e., Multilayer Perceptron
(MLP), is trained to learn the empirical quantum correction
potential parameters from drift-diffusion-equation (DD) based
Technology Computer-Aided Design (TCAD). Then the MLP is
incorporated into the ML-augmented TCAD framework to obtain
an adaptive DG model regarding to the prepared k·p results.
This ML-augmented adaptive DG model extend the scope of the
applications of the DD based TCAD, approaching the level of
the subband Schrodinger Poisson solver.

Index Terms—Gate-all-around Transistor, Machine Learning,
Quantum Effect

I. INTRODUCTION

The Silicon nanosheet GAA transistor is a promising can-
didate for the sub-3-nm technology node due to its good per-
formance in gate control. However, the ultra-scaled nanosheet
GAA transistor exhibits severe quantum effects, which chal-
lenge the accuracy of empirical DD TCAD. The DG model,
a quantum correction model, has been introduced to provide
reasonable electron statistics for moderate-size FinFET or
GAAFET channels. However, as the channel size decreases,
calibration becomes more tedious, and artificial overfitting
may occur. The current quantum correction models do not up-
date empirical parameters timely, which can result in reduced
quantum effects [1], [2].

To address this issue, a ML-augmented TCAD framework
has been proposed to build an adaptive density gradient (DG)
model. The framework is geometry-aware and stress-aware,
and the k·p numerical simulation is calibrated from the first-
principles calculation. Furthermore, the proposed framework
significantly reduces computational cost and uncovers intrinsic
knowledge of the reference k·p results.

This work was supported in part by the MOST under Grant
2021YFA1200502 and the NSFC under Grant 12174423.

II. EXPERIMENTS AND DISCUSSION

The proposed ML-augmented TCAD framework is shown
in Fig. 1. The workflow is composed of three phases: Hamil-
tonian Phase, Train Phase and Inference Phase. A multi-layer
perceptron (MLP) is employed to learn the quantum correction
potential related parameters from the carrier density profile in
the cross-sections of GAA devices with various shapes and/or
different stress. Once the training finished, the NN could infer
a set of proper parameters for DG model from a carrier density
profile calculated using more accurate theory like k·p. With the
updated DG models parameters, new carrier density profiles
can be generated by TCAD and data augmentation in standard
self-supervised learning can be realized. By minimalizing the
loss function between the original carrier density profile from
k·p theory and the TCAD iteratively, an adaptive DG model
is obtained for each bias, geometry and stress, et.al.

A. Hamiltonian Phase

The Hamiltonian is one of the most important physical
quantities in nanostructures. For a material like Silicon, first-
principles calculations are performed to obtain accurate band
dispersion. Then an appropriate band model, i.e., the DKK
model of the valence band, is chosen to obtain the k·p
Hamiltonian with tunned parameters [3]. The effect of strain,
electric, and magnetic fields also be included in the model.
The effect of strain, electric, and magnetic fields can also be
included in the model. Then, the k·p Hamiltonian is discretized
along some surface or direction. Finally, we obtain the pseudo-
tight binding Hamiltonian adaptive to the same mesh used
in TCAD simulations. The two cross-sections with different
transport direction along 〈110〉 and 〈100〉 are shown in Fig.
2(a) and (b). Also, we calculate the band structure along〈110〉
and 〈100〉 directions of different sizes of Si nanowires, and
present the band comparison of the k·p method and DFT
results. Then, the k·p Hamiltonian is validated. The results in
Fig. 2 indicate that the geometry dependence of the quantum
effect is not neglected for ultra-scaled devices.
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Fig. 1. Schematic of overall ML-augmented TCAD framework. The workflow is composed of three phases: Hamiltonian Phase, Train Phase and Inference
Phase.

Fig. 2. The cross-section of Si nanowires along (a) 〈110〉 and (b) 〈100〉
directions. (c)-(d) denote the nanowires band structures of 2 nm diameter.
(e)-(f) The bandgap as a function of dimension, black and red denote the
DFT and TCAD results respectively. The HSE06 level is used in these DFT
calculations.

B. Data Generation

Nanowire n-type FETs with Lg=15 nm and oxide thickness
Tox of 1 nm are built using the GTS framework (Fig. 3(a)), the
cross-section of which is also generated for device simulations
(see Fig. 3(b)). The nanowire height H, width ratio W/H, chan-
nel stress, and bias condition are split for device simulations.
The nanowire height H is split from 3 nm to 9 nm with a
2 nm increment for each step. The width-height ratio varies
from 1.0 to 3.0 for device simulations. The channel stress is
applied along the transport direction (z-axis) and ranges from
0 to 0.8 GPa. The gate voltage is swept from 0 to 0.8 V with
a 0.2V increment for each step.

The DG model with anisotropy empirical parameters γ is
employed for quantum correction potential λ, which is added

Fig. 3. (a) The proposed gate-all-around device in this work and (b) the cross-
section of the proposed device simulated by the Poisson-k.p solver. Undoped
channel is set and the metal gate Fermi energy is set to align with the middle
line of the gap of the Silicon.

to the DD model,

Jn = q·µn·n·(grad(
εC
q
−ψ−λn)+
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·NC,0

n
·grad( n

NC,0
))

(1)
The simplified first order approximation of the quantum po-
tential derived from Wigner’s equation is employed as

λn =
~2

12 · λn ·m0
· divgradψ + γn − εC/q

kBT
(2)

The two component parameters of γ, that is, γx and γy , are
split from 0.1 to 0.5 with 0.1 increment each step for dataset
generation.

C. Neural Network Training and Test

As the dataset is generated from TCAD simulation using
drift-diffusion equation with DG model, the electron density
profile on device cross-section is extracted with corresponding
parameters including surface potential φ, stress, nanosheet
height H, and width-height ratio W/H. φ is extracted from the
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Fig. 4. The 1-D cut of electron density profile of devices along X-direction at the center position of H under (a) 0 to 0.8 GPa tensile stress, (b) 1.0 to
3.0 width-height ratio, and (c) 3.0 to 9.0 nanowire height. The corresponding RMSE of charge profiles between k.p solutions and DG with inferred gamma
solutions at each mesh node is shown in (d)(e)(f).

Fig. 5. MSE on the train set and validation set in the MLP training and
inserted table shows the performance of the MLP on the test set.

potential at the position 0.1 nm under the GAA channel/oxide
interface, which is related to Vg , work function Wf , and
channel doping concentration Nch.

The data pre-processing is required for better training per-
formance, composed of two steps. First, the electron den-
sity profile is taken logarithm. Second, the profile matrix
is flattened into a 1-dimensional vector. Together with four
parameters φ, stress, H, and W/H, the normalization is per-
formed with a standard scaler, where centering and scaling
take place independently on each feature. After data pre-
processing, the dataset is split into 60%, 20%, and 20% for
the train set, validation set, and test set respectively [4], [5].
The MLP structure is shown in Fig. 1, which is composed
of one input layer with 1285 nodes, one output layer with 2
nodes, and three hidden layers with 512, 128, and 32 nodes
respectively. The MLP is implemented in Python with the
Pytorch framework and trained using the back-propagation
algorithm. The mean square error (MSE) is used as the loss

function in the training and optimized by the Adam optimizer
with a learning rate of 1.0×10-3. The activation function is
sigmoid and the batch size is 128. After 100 epochs, the MSE
on the train set converges and the performance of the MLP
is evaluated on the test set as shown in the inserted table in
Fig. 5. The coefficient of determination R2 reaches 1.0. Total
MSE reaches 6×10−6, which indicates the MLP is capable to
predict accurate quantum effect-related empirical parameters
γx and γy .

D. Inference Phase

The trained ANN is now used as a DG-parameter solver
as shown in Fig. 1. A cross-section of the proposed device is
solved using a self-consistent loop with the Poisson equation
coupled with the k·p method, from which the electron density
profile could be obtained as input to the trained ANN. In
this way, the corresponding DG parameters γx and γy are
inferred by the ANN. The electron density profile calculated
by the DG model with inferred γx and γy see (red lines
in Fig. 4(a)(b)(c)) are compared with that calculated by the
k·p theory (see blue dots in Fig. 4(a)(b)(c)) in terms of 1-D
cut distribution along the x-direction, which indicates a good
prediction is achieved for DG parameters. The performance
of the proposed framework is verified by the following two
parts:

1) Stress-aware: Firstly, the proposed framework is tested
under different channel stress. The 5nm×5nm cross-section of
GAA devices are used. The γ inference process is similar to
the process mentioned above. The stress condition range from
0 to 1.0 GPa and the bias condition is 0.8V. The accurate 1D-
cut profiles (blue dots in Fig. 4(a)) and predicted profile (red
lines in Fig. 7(a)) match well, and the RMSE of charge at each
mesh node is relatively small around 1018 (see Fig. 4(d)).
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Fig. 6. BTE simulation results and the proposed DG results of GAA devices
with various channel geometry (a) Nanowire diameter rises from 3 to 9 nm
and (b) W/H ratio increases from 1 to 3.

2) Geometry-aware: The geometry dependence of the
framework is also checked using the GAA devices with various
width-height ratios and nanowire diameters. As we could see
from Fig. 4(b), the electron density profile of three GAA
devices of H=5 nm and W=5, 10, and 15 nm are compared
under the tensile stress of 0.8 GPa and the gate voltage of 0.6V.
A good prediction of electron concentration is performed see
Fig.4(b) and (e). Besides, the nanowire devices with diameters
of 3, 5, 7, and 9 nm are simulated and analyzed using the same
approach as shown in Fig. 4(c)(f).

These results show that the proposed neural network ex-
hibits stress-aware and geometry-aware accuracy for quantum
confinement effect prediction. Our ML-augmented framework
works well for quantum correction by finding adaptive pa-
rameters of the DG model, which is demonstrated on both
wide cross-section devices and ultra-scaled cross-section (the
smallest cross-section is only 3nm×3nm).

E. Discussion

To check our framework in 3-D TCAD simulation, an
Lg=15 nm nanowire n-type FET is employed for comparison
of Multi-Subband Boltzman Equation (MSBTE) simulation
and the proposed ML-augmented DD simulation with inferred
adaptive DG model. The I-V curve is shown in Fig. 6(a) and
(b), where nanowire diameter varies in (a) and the W/H varies
in (b). The good match between I-V from the two solvers
indicates that our proposed ML-augmented TCAD framework
could do accurate characteristics of quantum effect in the state-

of-art GAA devices with much less computational cost than
MSBTE method.

III. CONCLUSION

A ML-augmented TCAD simulation framework, that can
effectively extend the scope of application of DD based TCAD
for ultra-scaled GAA transistors, is proposed. It is able to
capture quantum confinement accurately by constructing an
adaptive DG model, which is demonstrated to be both stress-
aware and geometry-aware. The I-V characteristics match well
with the accurate but more time-consuming MSBTE method.
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