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Abstract—The top part of the valence band structure
is much more complex than the bottom part of the
conduction bands and the valence bands can not be
approximated by simple methods (e.g. effective mass
approximation). Previously, it has been shown how
to apply the local empirical pseudopotential method
to confined states in MOS structures. A problem of
this approach is the long CPU time owing to the
large dimension of the Hamiltonian. With the k*p
approximation the CPU time can be reduced by orders
of magnitude with negligible error, in particular for
the valence bands. Since the electrostatic potential can
be included in the k*p approximation, the eigenvalue
problem for the full pseudopotential Hamiltonian has
to be solved only once for a given MOS structure
regardless of the gate bias or temperature.

Index Terms—MOS devices, semiconductor device
modeling, schrodinger equation

I. Introduction

The valence band structure of silicon is much more
complex near its maximum than the conduction bands
near their minima and can not be approximated by an
effective mass [1]. The local empirical pseudopotential
method (EPM) yields a good approximation not only near
the Γ-point but in the complete Brillouin zone (BZ) [2].
The EPM has been extended to the case of confined
states in MOSFETs [3]. The CPU time for solving the
corresponding eigenvalue problem is rather high due to
the large size of the Hamiltonian. Here, we propose a k*p
method for confined states by which the CPU time can be
reduced by orders of magnitude.

II. The Pseudopotential Hamiltonian

In a perfect infinite crystal the lattice potential is pe-
riodic and can be approximated by a pseudopotential [4].
The periodic lattice potential Vlat(~r) is expanded into a
Fourier sum

Vlat(~r) =
∑

l

Vs

(
| ~Gl|

)
cos

(
~Gl · ~τ

)
exp

(
i ~Gl · ~r

)
, (1)

TABLE I
Pseudopotential form factors for | ~Gl| in units of 2π/a0.

Vs,
√

0 Vs,
√

3 Vs,
√

8 Vs,
√

11
[eV] [eV] [eV] [eV]

Silicon -10.2189 -3.0490 0.7497 0.9850

Oxide -5.4189 -6.4030 1.5743 2.0686

where Vs(| ~Gl|) is a symmetric pseudopotential form factor,
~τ = (~ex + ~ey + ~ez)a0/8 (the positions of the two silicon
atoms in the elementary cell are ±~τ), a0 = 0.543 07 nm
the lattice constant of silicon, and ~Gl the lth vector of the
reciprocal space of the diamond lattice

~Gl = 2π

a0

−il + jl + kl

+il − jl + kl

+il + jl − kl

 . (2)

The indices il, jl, kl can take any integer value and l is a
linear index for the index triple. In the Fourier sum only
four nonzero form factors are taken into account which are
given in Tab. I. The form factors Vs,

√
3, Vs,

√
8 and Vs,

√
11

for silicon are taken from [5]. The form factor Vs,
√

0 is
introduced to shift the maximum of the valence bands to
zero energy for bulk silicon.

For the MOS structure a pseudopotential for the silicon
dioxide is required. This pseudo oxide is based on the same
lattice as silicon and its pseudopotential form factors are
chosen in such a way that the conduction and valence band
barriers between silicon and oxide match the experimental
values [3]. In Fig. 1 the double gate PMOS structure is
shown, which is assumed to be periodic and the (001)
surface orientation is chosen. The lattice potential for this
structure is assumed to change abruptly when the material
changes [3]. The position of the interface w.r.t. the atoms
has a strong impact on the 2D subband structure and its
symmetry. The left interface is located at z = 2a0 and
thus falls in between the two atoms of the elementary
cell centered at (0, 0, 2a0). This configuration has only a
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Fig. 1. Double gate PMOS structure.

fourfold symmetry in the 2D BZ. In order to obtain the
expected eightfold symmetry the lattice is shifted by ~τ
and one atom of the elementary cell falls now onto the
interface between silicon and oxide. The corresponding
lattice potential for the PMOS structure is given by

V MOS
lat (~r) =

{
V si
lat(~r + ~τ) for 2a0 ≤ z ≤ 12a0

V ox
lat (~r + ~τ) for z < 2a0 or z > 12a0

(3)

with a total length in z-direction of Lz = 14a0 (Fig. 1).
The Schrödinger equation (SE) is given by [3][
− ~2

2m0
∇2 + V MOS

lat (~r) − eϕ(z)
]

︸ ︷︷ ︸
=H(~r)

Ψη,~k(~r) = εη,~kΨη,~k(~r) ,

(4)
where ~ is the reduced Planck constant, m0 the free
electron rest mass, e the elementary charge, Ψη,~k(~r) the
wave function of the ηth eigen state, εη,~k the corresponding
eigen energy for the wavevector ~k, and ϕ(z) the electro-
static potential.
The lattice periodic part of the Bloch states is expanded

in a Fourier series resulting in a wave function of the form

Ψη,~k(~r) = 1√
a2

0Lz

∑
λ

aη,~k;λ exp
(

i
(
~k + ~Γλ

)
· ~r

)
(5)

with
~Γλ = [(iλ + jλ)~ex + (iλ − jλ)~ey] 2π

a0
+ κλ2π

Lz
~ez . (6)

The indices iλ, jλ and κλ can take any integer value and
λ is again a single index. The prefactor is set to fulfill the
normalization condition on the device volume a0 ×a0 ×Lz.
The x- and y-components of ~Γλ form the lattice of the
2D reciprocal space [3]. Since the confined subbands are
essentially flat w.r.t. kz due to the thick oxide, we always
use kz = 0. In Fig. 2 the 2D BZ and the irreducible wedge
are shown. The eight symmetry operations of the energy
are four reflections and one permutation: ε(±kx, ±ky) =
ε(±ky, ±kx).
The Hamiltonian of the SE is projected onto the plane-

wave basis

[
ĤEPM

]
λ,λ′

= 1
a2

0Lz

Lz∫
0

a0∫
0

a0∫
0

exp
(

−i
(
~k + ~Γλ

)
· ~r

)
H(~r) exp

(
i
(
~k + ~Γλ′

)
· ~r

)
dxdydz . (7)
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Fig. 2. 2D Brillouin zone for a (001) surface orientation. The dark
grey area is the irreducible wedge.

The expansion is limited to a finite number of plane waves
by the condition for the index λ∣∣∣~Γλ

∣∣∣ < 5.72π

a0
, (8)

which cuts off the expansion at very high energies similar
to the EPM for the bulk case [2]. The cutoff sphere is not
shifted with the wavevector to avoid discontinuities in the
bands. Instead, a rather large value (5.7 × 2π/a0) is used
for the cutoff radius and kx, ky are restricted to the first
BZ.

The space charge density in the silicon region
due to holes and acceptors with a concentration
NA(z) = 1018 cm−3 is averaged in the x- and y-directions

ρ(z) = e

2π2

∑
η

∫∫
BZ

1
1 + exp

(
µF−εη(kx,ky)

kBT0

)
a0∫

0

a0∫
0

∣∣Ψη,kx,ky
(x, y, z)

∣∣2 dxdy dkxdky − eNA(z) , (9)

where µF is the Fermi energy and kBT0 the thermal energy
at the lattice temperature. The sum runs over all valence
subbands.

The electrostatic potential ϕ(z) is the solution of the 1D
Poisson equation (PE) [6]

d
dz

(
ε(z)dϕ

dz

)
= −ρ(z) . (10)

The permittivity ε(z) changes abruptly when moving from
silicon into oxide resulting in an interface condition that
requires the continuity of the electric flux density in z-
direction and of the potential. On the gates Dirichlet
boundary conditions are applied: ϕ(0) = ϕ(Lz) = VG.
The PE is discretized on an equidistant grid with the
finite volume method. The SE and PE are solved self-
consistently for the double gate PMOS structure by a
Gummel loop [6].
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III. k*p Approximation
We project the Hamiltonian (7) onto its eigenvector

basis at the Γ-point (kx = ky = 0) and ϕ(z) = 0

ĤΓ = â†
0ĤEPM

0 â0 , (11)

where â0 is the matrix of which the column vectors
are the eigenvectors at the Γ-point and zero potential.
Nonzero values of the wave numbers kx, ky and potential
are treated as perturbations resulting in a perturbation
Hamiltonian

P̂ = P̂kxkx + P̂ky ky + P̂ϕ . (12)

For example, the perturbation Hamiltonian P̂kx
is ob-

tained by

P̂kx = â†
0

∂ĤEPM

∂kx

∣∣
kx=ky=0,ϕ=0â0 . (13)

With the Löwdin perturbation theory we can derive the
k*p approximation for the Hamiltonian [7]. To this end
we split the eigen states into two sets. The set A contains
all states with an eigen energy of less than 20 eV and the
set B all other states. The k*p Hamiltonian is given with
η, η′ ∈ A by[

Ĥk*p
]

η,η′
=

(
εη,0 + ~2

2m0
(k2

x + k2
y)

)
δη,η′

+
[
P̂

]
η,η′

+
∑
ν∈B

[
P̂

]
η,ν

[
P̂

]
ν,η′

εref − εν,0
, (14)

where εη,0 are the eigen energies at the Γ-point and zero
potential. The reference energy εref is set to the value of
the top valence subband at the Γ-point [1].

IV. Simulation Results
The dimension of the EPM Hamiltonian for the PMOS

structure in Fig. 1 is 5311 and it takes 80 CPU seconds
to solve the corresponding eigenvalue problem for a single
k-vector on a single CPU core. The dimension of the k*p
Hamiltonian is only 431 and the CPU time 63 milliseconds
corresponding to a reduction by more than three orders of
magnitude. In addition, the smaller size of the eigenvalue
problem results in a more cache-efficient parallelization.
This does not mean that the solution of the SE with
the EPM Hamiltonian dominates the total CPU time,
because it has to be solved for a given MOS structure
only once regardless of the applied bias or temperature.
If desired, the size of the k*p Hamiltonian can be even
further reduced by shrinking the set A, still obtaining a
good approximation near the Γ-point.
The subband energies along the kx-axis for a flat elec-

trostatic potential are shown in Fig. 3 evaluated with the
full EPM Hamiltonian and k*p. The calculation yields the
usual minima for the conduction subbands: the central
valleys and the satellite ones at 0.85·2π/a0. Close to the X-
point the deviation of the k*p approximation from EPM
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er
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[eV
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k*p
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0

Fig. 3. Subband structure of the double gate PMOS structure for a
flat electrostatic potential from the Γ- to the X-point based on the
EPM and k*p Hamiltonians. In the inset the top six valence subbands
are shown.

becomes larger, as expected for a Γ centric expansion. This
does not matter in the case of holes, because the top of
the valance subbands is centered at the Γ-point, where the
error is much smaller. In the inset the valence subbands are
shown close to the Γ-point and the threefold degeneracy
of the local EPM at the Γ-point for bulk silicon is reduced
to a twofold one because one subband splits off due to the
reduced symmetry of the PMOS structure.

After 21 Gummel-type iterations of the SE and PE
the change in the potential is less than 1 · 10−7 V at
VG = −1 V, µF = 0 and room temperature. In Fig. 4
(upper graph) the energy of the first valence subband is
shown in the irreducible wedge of the first BZ. The black
line indicates an energy of −0.3 eV below which the Fermi-
Dirac distribution for holes can be neglected at room
temperature and µF = 0. In the lower graph the difference
between the k*p and EPM calculations is shown. The line
indicates an error of 1 meV and the error in energy for the
top 300 meV of the first valence subband is much smaller
than 1 meV. Thus, the k*p approximation is sufficiently
accurate to calculate the valence subband structure.

The corresponding hole density averaged over the two
lateral dimensions and the potential are shown in Fig. 5.
The hole density oscillates on the scale of the elementary
cell of silicon, but these oscillations have a minor impact
on the potential due to the low-pass filter characteristics
of the PE. As expected, the hole density is symmetric
w.r.t. z = 7a0.

The valence subbands are strongly nonparabolic and the
mass is not constant. In Fig. 6 the averaged inverse mass
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Fig. 4. Energy of the first valence subband in the irreducible wedge
of the BZ at VG = −1 V and room temperature (upper graph, linear
scale). The axes are in units of [2π/a0]. The absolute value of the
difference of EPM and k*p (lower graph, log scale). The lines indicate
an energy of −300 meV in the upper graph and an error of 1 meV in
the lower graph.
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Fig. 5. Hole density and potential along a vertical cut of the double
gate PMOSFET for VG = −1 V at room temperature and µF = 0.

of the holes

1
mxx

= −

∑
η

∫∫
BZ

1
~2

∂2εη

∂k2
x

dkxdky

1+exp
(

µF−εη(kx−kx,dis,ky)
kBT0

)
∑

η

∫∫
BZ

dkxdky

1+exp
(

µF−εη(kx,ky)
kBT0

) (15)

is shown together with the drift velocity in x-direction
for a Fermi-Dirac distribution, which is displaced by a
wavevector kx,dis in the x-direction. The signs of the mass
and velocity are chosen according to the hole picture. The
rapid drop of the inverse mass by a factor of 2 when the
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Fig. 6. Inverse mass and drift velocity of the holes evaluated with
a displaced Fermi-Dirac distribution for the double gate PMOSFET
at VG = −1 V, room temperature and µF = 0.

displacement changes from 0 to 0.05×2π/a0 demonstrates
the strong nonparabolicity of the valence bands, which has
a strong impact on the hole mobility, Hall factor etc. [8].

V. Conclusions
In conclusion, a k*p approximation for the EPM Hamil-

tonian of confined states in a MOS structure has been
demonstrated by which the CPU time can be reduced
by orders of magnitude without sacrificing accuracy. The
approach is not limited to silicon and can be easily applied
to other semiconductors by changing the EPM parameters.
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