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Abstract—The Scharfetter-Gummel scheme is a widely used
stabilization method for solving the drift-diffusion model. How-
ever, it is only applicable when using Maxwell-Boltzmann carrier
statistics and does not yield thermodynamically consistent results
in other cases, such as Fermi-Dirac statistics. Several modifi-
cations to the scheme have been proposed as improvements in
this case such as Diffusion enhanced schemes. These are usually
based on approximations which are not always accurate. Using
similar assumptions as Scharfetter and Gummel, we develop a
new scheme where the boundary value problem for each edge
is solved with the shooting method and a high-order solver for
ordinary differential equations. Even though the computational
cost is much larger than for the original scheme, it can be
effectively parallelized and a significantly negative impact on the
total runtime is avoided. The scheme is applied to an NMOSFET
device and stationary, transient and small-signal solutions at
cryogenic temperatures are presented.

Index Terms—drift-diffusion model, numerical stability, cryo-
genics

I. INTRODUCTION

The drift-diffusion model (DDM) is the basis of technology
computer aided design (TCAD) and thus of today’s industrial
device design process despite its shortcomings[1]. This is due
to the unrivaled numerical robustness of the DDM, when the
Scharfetter-Gummel stabilization scheme is used in conjunc-
tion with a finite volume discretization in the non-degenerate
case [2]. For a certain class of mobility and generation-
recombination models it can be shown that the discrete DDM
has a unique positive solution (e.g. [3], [4]). Furthermore,
these properties improve the convergence when solving the
nonlinear equation system.

Unfortunately, the Scharfetter-Gummel stabilization does
not work in the case of a degenerate particle gas, and a
similar simple stabilization scheme does not exist. While
in many applications degeneracy can be ignored, this is no
longer the case, if, for example, the temperature is reduced
(e.g. control logic for quantum computing), and Fermi-Dirac
statistics have to be used. This modifies the diffusion term
in the DDM, it is no longer possible to separate the impact
of the electrostatic potential from the quasi-Fermi-level in the
Fermi-Dirac integral for the particle density, and Slotboom
variables can not be derived. Various modifications of the
Scharfetter-Gummel stabilization for the degenerate case have
been developed, which are based on certain approximations

introducing their own problems [5]. Kopruki and Gärtner
developed a new approach, where they use similar approxi-
mations as Scharfetter and Gummel for the current along an
edge of the Delaunay grid and solve the resultant nonlinear
integral equation by numerical means [6].

Instead, here we solve the corresponding boundary value
problem numerically under the same assumptions as Scharfet-
ter and Gummel, which ensures consistency with the original
stabilization in the case of low (non-degenerate) particle den-
sities. We use the shooting method together with the adaptive
RADAU5 ODE solver, where the accuracy of the solution can
be controlled [7].

II. METHOD

The electron and hole current densities are assumed to be
constant along an edge and are given by

Jn = −eµn
∆x

n
∂Φn
∂x

and Jp =
eµp
∆x

p
∂Φp
∂x

(1)

where e is the elementary charge, µn/p the electron/hole mo-
bility, n/p the electron/hole density and Φn/p the electron/hole
quasi-fermi potential. ∆x is the edge length and x ∈ [0, 1]
the normalized edge coordinate. The relationship between the
density and the corresponding quasi-fermi potential is

n = NCF1/2

(
ϕ− Φn
VT

− EC

kBT

)
= NCF1/2(ηn) (2)

p = NVF1/2

(
Φp − ϕ
VT

+
EV

kBT

)
= NCF1/2(ηp) , (3)

where NC/V is the effective density of states for the conduc-
tion and valence band, T is the temperature, kB the Boltzmann
constant and VT = kBT

e the thermal voltage. F1/2(η) is
the Fermi-Dirac integral where ηn/p are the dimensionless
chemical potentials. Assuming that the electrostatic potential
varies linearly along the edge, the ODE in equation eq. (1)
can be reformulated as

∂η

∂x
= ∆ϕ− j

F1/2(η)
(4)

with the normalized potential difference ∆ϕ = −qϕR−ϕL

VT
,

where q = −1 for electrons and q = +1 for holes and
ϕL/R is the potential at the left and right end of the edge.
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The normalized current density is j = − q∆x
kBTNC/Vµn/p

Jn/p.
For the sake of brevitiy, in the following only electrons are
considered.

The goal is to calculate j for a given ∆ϕ under the
assumption that

η(x = 0) = ηL = F−1
1/2

(
nL

NC

)
η(x = 1) = ηR = F−1

1/2

(
nR

NC

)
. (5)

To that end we take an initial guess for the value of j and
solve eq. (4) numerically, e.g. starting from ηL at x = 0 going
to x = 1. The difference between the resulting η̃R = η(x =
1) and ηR is then brought to zero by changing j until the
correct value is found. This is achieved by means of a Newton
iteration, where the update for the n-th step is calculated by

jk+1 = jk −
(
∂η̃R

∂j

∣∣∣∣
jk

)−1(
η̃R

∣∣∣∣
jk

− ηR

)
. (6)

We use a custom implementation of the RADAU5 solver that
will not only give us the value η̃R but also its derivative. The
stepsize is adaptively changed to ensure that the accuracy of
the solution is close to machine precision, which is necessary
for the Newton iteration to converge. The RADAU5 solver
is based on a fully implicit Runge-Kutta scheme of type
Radau IIA. It has fifth-order accuracy and is L-stable, which is
advantageous as depending on the parameters the ODE might
be quite stiff.

At first glance eq. (4) looks fairly simple, however, under
certain conditions the ODE solver might not be able to achieve
a solution due to numerical reasons. This is especially the case
for small values of η, resulting in huge values for j

F1/2(η) . On
the other hand, in that case the Fermi-Dirac integral can be
approximated very accurately. We use

F1/2(η) ≈ exp(η) for η < −36 (7)

and

F1/2(η) ≈ 1

γ + exp(−η)
for − 36 ≤ η ≤ −16 (8)

with γ =
√

1
8 ≈ 0.35. Note that the approximation in eq. (8)

is similar to the one by Blakemore [8] who used γ = 0.27,
however within that interval our value is more accurate. In fact,
both eqs. (7) and (8) are exact when using double precision
arithmetic. If η is not small we use the implementation by
Fukushima [9].

If both ηL/R < −36, the regular Scharfetter-Gummel result
is obtained, while for ηL/R < −16 a similar iteration scheme
as in [5] can be used. If only one of the two boundary values
for η is small, the edge can be split at the point where η =
−16, and the region where η < −16 is analytically integrated.

In the following we assume w.l.o.g. that ∆ϕ ≤ 0, which can
always be achieved by reversing the edge direction if neces-
sary. We can identify two cases where the solution to the ODE
results in a linear η(x), first if ∆η = ηR− ηL ≈ 0 and second
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Fig. 1: η(x) for ∆ϕ < 0 starting from ηL and going from left
to right for different values of j.

if ∆η ≈ ∆ϕ. In the first case, we write η(x) = ηL+δη(x) and
j = ∆ϕF1/2(ηL) + δj with δη(x) and δj small, and linearize
the ODE:

∂δη

∂x
= − δj

F1/2(ηL)
+ ∆ϕ

F−1/2(ηL)

F1/2(ηL)
δη . (9)

The solution can then be carried out analytically resulting
in

j = F1/2(ηL)(∆ϕ−∆η)B

(
∆ϕ

F−1/2(ηL)

F1/2(ηL)

)
(10)

where B(x) = x
exp(x)−1 is the Bernoulli function. In the

second case the current density is small, and a similar strategy
yields

j = F1/2(η)(∆ϕ−∆η) (11)

where

F1/2(η) =

(∫ ηR

ηL

1

F1/2(η)
dη

)−1

(12)

is the harmonic mean of the normalized density over the edge.
It is calculated by gaussian quadrature.

For the remaining cases the ODE solver is used. Depending
on the direction and on the values of ηL/R and ∆ϕ, the solu-
tion might exponentially increase with x. To avoid numerical
over- and underflows, we therefore always choose the direction
along which the exponential term decreases. In Fig. 1 the
solution of eq. (4) is shown for a fixed value of ηL and different
values of j. There are three different cases that can be iden-
tified: The first case (red) is that ηR > ηL which corresponds
to j < ∆ϕF1/2(ηL). The second case (blue) is obtained for
ηL < ηR < ηL+∆ϕ and corresponds to ∆ϕF1/2(ηL) < j < 0.
In these two cases the ODE is solved from the left to the right,
as η(x) does not increase exponentially. Only in the third case
(green) with ηR < ηL + ∆ϕ and j > 0 we solve the ODE
from the right to the left.

To stabilize the Newton iteration, we always maintain a

266



−10 −5 0 5 10
−10

−5

0

5

10

Potential drop [VT]

D
er

iv
at

iv
e

of
cu

rr
en

t

Bernoulli
nL = 1018 cm−3

nL = 1019 cm−3

nL = 1020 cm−3

Fig. 2: Bernoulli coefficients and corresponding normalized
derivatives of the current w.r.t. the density for the degenerate
case at the left and right grid nodes. The particle density at
the right-hand side of the edge is fixed to nR = 1018 cm−3.

lower and upper limit for j with jmin < j < jmax. These
are updated during the iteration based on the sign of the
residual. If the Newton update violates this condition, a simple
bisection step is used instead, which guarantees convergence.
The previously given initial bounds for j depending on the
case can be improved if we require that at some point along
the edge the slope of η(x) must be exactly equal to ∆η. This
leads to

jmin = max(jmin,0,min(nL, nR)|∆ϕ−∆η|) (13)
jmax = min(jmax,0,max(nL, nR)|∆ϕ−∆η|) . (14)

Once the Newton iteration is converged, the derivatives of
the solution j with respect to ηL/r and ∆ϕ are obtained by
implicit differentiation.

III. RESULTS

The obtained edge current density together with its deriva-
tives with respect to the particle densities and electrostatic
potentials at both ends of the edge are sufficient to solve the
continuity equation discretized by the finite volume method
with an outer Newton iteration. At this level no differences
compared to the standard DDM occur. Since the currents on
the grid edges depend only on local variables, they can be
evaluated in parallel. Furthermore, the number of edges is
linear in the number of grid nodes and in the 2D or 3D cases
the additional workload compared to the standard DDM is
quite manageable (about 1.5 to 2.0 times slower in the case
of our 2D example).

The Bernoulli coefficients of the non-degenerate case cor-
respond to the normalized derivatives of the current w.r.t. the
densities (Fig. 2). In the case of low densities or large potential
drops the Bernoulli coefficients are reproduced. Furthermore,
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Fig. 3: Double-gate NMOSFET device with relevant parame-
ters.

the coefficients have the same sign as the Bernoulli coef-
ficients, which is a prerequisite for numerical stability. For
zero bias (equilibrium) the current vanishes and the DDM
particle density equals the one calculated directly by Fermi-
Dirac statistics.

The stabilization scheme is tested for a double gate NMOS-
FET which is shown in Fig. 3, where we assume a constant
mobility of µ = 100 cm2/(V s). Note that the specific value
is rather unimportant, since our goal is only to demonstrate
the numerical stability of our scheme, and not to produce
physically meaningful results. We use partial ionization in con-
junction with a simple generation/recombination model [10].

In Fig. 4 the output characteristics at 4 K are shown, and
no numerical problems are encountered. The self-consistent
Newton-Raphson method converges quadratically and the final
change in the potential is less than 10−12 V, demonstrating that
the global solution accuracy is not negatively affected by the
ODE solver.

The approach also works in the transient case, and in Fig. 5
the terminal currents are shown when the device is turned on
at 0 ps. The transient simulation is numerically very robust,
although the drain/source bias is almost 3000 times the thermal
voltage at this low temperature. The simulation is perfomed
using the TR-BDF2 method [11] with adaptive time stepping.

Admittance parameters are shown in Fig. 6, so all usual
simulation modes (stationary, small-signal and large-signal)
are possible.

In conclusion, we have demonstrated that the DDM based
on Fermi-Dirac statistics can be solved in a numerically robust
way at low temperatures without a significant CPU time
penalty. Furthermore, this approach should also work in the
case of a hydrodynamic model.
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Fig. 4: Output characteristics of the double gate NMOSFET
at 4 K.
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Fig. 5: Transient results for an abrupt turn-on of the NMOS-
FET at 4 K, VGS = 0.2 V→ 0.75 V, and VDS = 0 V→ 1.0 V.
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[5] T. Koprucki and K. Gärtner, “Discretization scheme for drift-diffusion
equations with strong diffusion enhancement,” Optical and Quantum
Electronics, vol. 45, no. 7, pp. 791–796, 2013.

[6] P. Farrell, M. Patriarca, J. Fuhrmann, and T. Koprucki, “Compar-
ison of thermodynamically consistent charge carrier flux discretiza-
tions for fermi–dirac and gauss–fermi statistics,” Optical and Quantum
Electronics, vol. 50, no. 2, p. 101, Feb 2018.

[7] G. Wanner and E. Hairer, Solving ordinary differential equations II.
Springer Berlin Heidelberg, 1996.

[8] J. Blakemore, “Approximations for fermi-dirac integrals, especially the
function f1/2(η) used to describe electron density in a semiconductor,”
Solid-State Electronics, vol. 25, no. 11, pp. 1067–1076, 1982.

[9] T. Fukushima, “Precise and fast computation of fermi–dirac integral of
integer and half integer order by piecewise minimax rational approxi-
mation,” Applied Mathematics and Computation, vol. 259, pp. 708–729,
2015.

[10] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley, 1981.
[11] R. Bank, W. Coughran, W. Fichtner, E. Grosse, D. Rose, and R. Smith,

“Transient simulation of silicon devices and circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 4,
no. 4, pp. 436–451, 1985.

268


