
Application of a Hybrid Discontinuous Galerkin
Scheme onto Quantum-Liouville-type Equations for

Heterostructure Devices
1st Valmir Ganiu

Chair for High Frequency Techniques, TU Dortmund
Dortmund, Germany

valmir.ganiu@tu-dortmund.de

2nd Dirk Schulz
Chair for High Frequency Techniques, TU Dortmund

Dortmund, Germany
dirk2.schulz@tu-dortmund.de

Abstract—In addition to the high accuracy nature
of conventional finite element formalisms, discontinuous
Galerkin methods are suited for the realization of high
performance computing. Therefore, this approach is ap-
plied onto the Liouville-von Neumann equation describing
the electron transport in nanoscale heterostructure devices.
Unfortunately, discontinuous Galerkin methods are prone
to instability issues. As demonstrated, these inherent sta-
bility issues of the discontinuous Galerkin method can be
alleviated by the use of a complex absorbing potential
ensuring an efficient use of the Liouville-von Neumann
equation.

I. INTRODUCTION

With limited time and hardware resources, software
optimization is mandatory for carrier transport simu-
lations within nano-structures. Consequently, efficient
and accurate methods are needed for the approximation
and solution of the Liouville-von Neumann equation
or Quantum-Liouville-type equations. For this purpose
the discontinuous Galerkin (DG) approach is introduced,
which already has been successfully applied in compu-
tational fluid dynamics [1].
Three main characteristics of the DG approach make it
particularly suitable for this use case. Firstly, due to the
discontinuous nature of the approximating functions, all
resulting matrices are block diagonal. Hence, calculating
the inverse of such matrices is computationally less
demanding. Secondly, the inclusion of inverse matrices
can be done during the early stages of discretization,
where matrices are relatively small in dimension [2].
Lastly, with its underlying working principle on the
basis of matrix-vector-multiplication, the DG approach
is particularly suitable for the application in transient
simulations as shown in [3]. These advantages make the
DG method well suited for high-performance computing.

To establish a connection between the discontinuous
finite elements, a numerical flux must be defined. The
choice of the numerical flux, as well as the complex
absorbing potential, have a major impact on the scheme’s
stability. Hence, investigating this influence is part of this
work. To support the analysis of heterostructure devices,
this work aims to expand the algorithm from [3] con-
sidering a spatially varying effective mass distribution
and self-consistent Hartree potential in section II. In the
same section, the algorithm is derived for the Liouville-
von Neumann equation with a strong emphasis on the
numerical flux and complex absorbing potential. The
validation of the approach and the results are discussed
in section III, followed by a conclusion in section IV.

II. FUNDAMENTALS

The DG method is utilized in conjunction with the
Finite Volume Technique to approximate the Liouville-
von Neumann equation (LVNE) in center of mass coor-
dinates χ and ξ followed by an expansion in ξ-direction
based on plane waves [3]. To expand this concept with a
self-consistent Hartree potential and an inhomogeneous
effective mass distribution, the Liouville operator of the
LVNE is set up according to L = H(z) − H(z′). The
Hamiltonian H is defined as H(y) with z and z′ as its
coordinates

H(y) = − h̄2

2

{(
∂

∂y

)
1

m(y)

(
∂

∂y

)}
+ V (y). (1)

Here m(y) is the spatially varying effective mass. V
contains the self-consistent Hartree potential, the band
structure potential, and the contribution by the externally
applied bias. Eventually, after simplifying the Liouville
operator L and after a transformation into center-mass
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coordinates according to χ = 1/2·(z+z′) and ξ = z−z′,
the LVNE can be rewritten as

∂

∂t
ρ(χ, t) = D2(χ)

∂2

∂χ2
ρ(χ, t) +D1(χ)

∂

∂χ
ρ(χ, t)

+D0(χ)ρ(χ, t), (2)

to include the second derivative ∂2/∂χ2 stemming from
the spatially varying effective mass. The three expres-
sions D2, D1, and D0 are obtained from the above
mentioned Liouville operator L according to [4]

Dl,l′

2 (χ) =
ıh̄

8
m−(χ, ξl) · δl,l′

Dl,l′

1 (χ) =
ıh̄

4

∂
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m−(χ, ξl) +

ıh̄

2
m+(χ, ξl)

·
(
δl,l′−1 − δl,l′+1

2∆ξ

)
Dl,l′

0 (χ) =
ıh̄

2

∂

∂χ
m+(χ, ξl) ·

(
δl,l′−1 − δl,l′+1

2∆ξ

)
+

ıh̄

2
m−(χ, ξl) ·

(
δl,l′−1 − 2δl,l′ − δl,l′+1

∆ξ2

)
+

1

ıh̄
·
(
V (χ+

ξl
2
)− V (χ− ξl

2
)− ıW (ξl)

)
.

The expression m± denounces the spatially varying
effective mass in center-mass coordinates in accordance
with the relationship

m±(χ, ξ) =
1

m(χ+ ξ/2)
± 1

m(χ− ξ/2)
.

The Hartree potential as well as the complex absorbing
potential (CAP) are found within the last summand of
the operator D0(χ). The CAP shall be discussed at a
later stage of this work. Next, a substitution is carried
out by introducing

u(χ) =
∂

∂χ
ρ(χ, t). (3)

Then, inserting (3) in (2) yields the reduced first order
LVNE defined as

∂

∂t
ρ(χ, t) = D2(χ)

∂

∂χ
u(χ) +D1(χ)u(χ)

+D0(χ)ρ(χ, t). (4)

Ultimately, a system of two equations with (3) and (4)
containing the two unknown vectors u and ρ results.
Next, the conventional finite element formalism (FEM)
with test functions li(χ) is introduced, eventually arriv-
ing at a notation with the stiffness- and mass matrix S
and M typical for FEM as derived in [3]. However, the
peculiarity of the discontinuous Galerkin method is the

non-overlapping characteristic of the one-dimensional
finite elements resulting in block-diagonal matrices. That
is, each element has three distinct nodes due to a
quadratic ansatz in the χ-domain. The numerical flux
is found in the first order derivatives ∂/∂χρ(χ, t) and
∂/∂χu(χ) from (3) and (4), respectively. The density
matrix ρ and the substitution function u are transformed
into the eigenspace according to the transformation
c(χ, t) = Φ† · ρ(χ, t) and ũ(χ) = Φ† · u(χ), respec-
tively. For the transformation, a matrix Φ is utilized
containing the basis vectors column-wise corresponding
to the eigenvalues λj derived from the expansion in the
ξ-domain based on plane waves [4]. After performing
a two-stage partial integration, the local strong formu-
lation, as described in [3], is obtained utilizing Green’s
theorem. Both equations in their strong variant read as

Mk ∂

∂t
ckj −D2S

kfk
j +D1M

kũk
j +D0M

kckj

= D2

∮
∂Dk

(ukj (χ)− uk,∗j (χ)n̂l(χ) (5)

and

Mkũk
j −Skfk

j =

∮
∂Dk

(fk
j (χ, t)−fk,∗

j (χ, t)n̂l(χ). (6)

In both cases a numerical flux is introduced. To generate
the values for the numerical fluxes, the right-hand-sides
of (5) and (6) have to be evaluated. For demonstration
purposes, it shall suffice to perform this step on (6). For
simplicity, in both cases an upwinding flux is assumed,
such that the right-hand-side of (6) would evaluate to∮

∂Dk

(fk
j (χ, t)− fk,∗

j (χ, t))n̂li(x) =

λj

(
c−r/l + c+r/l

2

)
+ |λj |

1− α

2
[[c]]r/l. (7)

Where
(
c−r/l + c+r/l

)
/2 is the continuity, [[c]]r/l refers

to the jump, which is further defined as [[c]]r/l =
n̂−
r/l · c

−
r/l + n̂+

r/l · c
+
r/l. Concerning the notation, n̂±

r/l

denote vectors pointing to the interior (−) and to the
exterior (+) of the right and left edge of each element,
respectively. Additionally, λj denotes the eigenvalue of
each element, and finally α describes the weight of the
jump that is accounted for in the upwind flux. For further
information on α, refer to Tab. I in section III.
Since u is spatially invariant at the boundaries of the
computational domain, the numerical flux affecting u(χ)
does not contribute to the boundary conditions. As for
the numerical flux affecting ρ(χ, t), Dirichlet and inflow
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boundary conditions are set corresponding to the Fermi-
Dirac distribution [5], [7].
For the theoretical derivation of the LVNE, an infinitely
expanding domain corresponding to the ξ-coordinate is
assumed. This assumption is necessary such that the
wave function disappears regarding infinity. However,
due to the numerical approximation of the LVNE, this
assumption opposes the need for the finiteness of each
computational domain. Therefore, the termination of the
ξ-domain with open boundaries causes the appearance
of the values of the statistical density matrix ρ as
additional surface terms. Contrary to this fact, it is
common to neglect these surface terms in the common
literature. From a mathematical viewpoint, this method
corresponds to the formulation of zero valued Dirichlet
boundary conditions for the density matrix in the space
domain. From a physical viewpoint, the ξ-domain is now
equipped with a perfectly reflecting layer at its edges.
These reflections overlap with the original values of
the density matrix distorting the numerical results. To
counteract this problem, a complex absorbing potential
is deployed, which represents a dampening layer at the
said edges eliminating above mentioned reflections [5],
[6].
After a subdivision of the computational domains Ωχ

and Ωξ into Nχ and Nξ elements, with an order N for
the approximating functions, the square system matrix
has a dimension of 2NχNξ(N + 1).

III. NUMERICAL RESULTS

The DG method is validated on the basis of a resonant
tunneling diode (RTD), which is schematically shown
in Fig. 1. The physical dimensions and the numerical
settings, including the upwind flux, are adopted from
[3]. First, the result for the spatially varying effective
mass distribution is compared with a homogeneous mass
distribution for the steady state case and the thermal
equilibrium in Fig. 1. Evidently, the density between the
double barrier is higher with nmih, which is in agreement
with the results in [4]. For the transient simulation, each
iteration is computed utilizing the fourth-order Runge
Kutta algorithm. For a successful convergence of the
scheme, the eigenvalues of the system matrix must be
exclusively on the left of the complex plane. That is,
their real part must be negative [8]. Fig. 2a presents
the eigenvalues of the time dependent system matrix
without the CAP, while Fig. 2b shows the eigenvalues
with the CAP applied. The numerical flux deployed in
this case is of an upwinding nature (α = 0) as defined
in section II. To further analyze the stability dependency

E [eV]

Fig. 1: Self-consistent carrier distribution in a RTD for a
homogeneous nmh and for an inhomogeneous effective mass
distribution nmih. The band edge energy E is added for clarity.
The spatially varying effective mass distribution was chosen
accordingly.
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Fig. 2: Stability analysis for the upwind flux without the
CAP (a) and with the CAP (b) showing the characteristic
eigenvalues of the system matrix.

of the scheme on the numerical flux, Fig. 3a and Fig.
3b display the eigenvalue spectrum with a central flux
(α = 1), while Fig. 3c and Fig. 3d show a central flux,
where the upwinding proportion is weighted with 50%
(α = 0.5). The central numerical flux does not take into
account the direction of the propagating wave. Hence,
it is to be expected that an upwind flux should produce
better results.
Analogously to the investigation in Fig. 2a–2b, both

TABLE I: Maximum real part of the eigenvalues for different
α without CAP (ℜmax(λnC)) and with CAP (ℜmax(λC)). α
is a constant between 0 and 1 linked to the weight of the
upwinding flux, i.e. α = 1 denotes a central flux, while α = 0
represents an upwind flux.

α 1.0 0.5 0.0

ℜmax(λnC) 0.0668 · 1015 0.0015 · 1015 −3.92 · 108

ℜmax(λC) 0.0046 · 1015 −0.0011 · 1015 −0.0012 · 1015
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(a) (b)

(c) (d)

Fig. 3: Stability analysis for the central flux without the CAP
(a) and with the CAP (b), as well as the weighted flux for
α = 0.5 without the CAP (c) and with the CAP (d) showing
the characteristic eigenvalues of the system matrix.

proposed numerical fluxes are analyzed with and without
the CAP. To clarify the influence of the CAP on the
eigenvalue spectrums provided in Fig. 2a–2b and Fig.
3a–3d, the maximum values of the real part for the
previously mentioned numerical fluxes are examplarily
calculated and summarized in Tab. I. As it can be seen
from the gray and black vertical lines in Fig. 3c-3d, as
well as the values from Tab. I, the eigenvalue spectrum
of the weighted numerical flux (α = 0.5) is shifted
far enough to the left half of the complex plane, such
that a stable algorithm is ensured. Therefore, it can
be concluded that the CAP has a considerable positive
impact on the stability of the proposed algorithm. A tran-
sient analysis can be thus undertaken as demonstrated in
Fig. 4, in which a convergence beginning with the case
for the thermal equilibrium leading to the thermal non-
equilibrium case can be observed.

IV. CONCLUSION

Finally, the hybrid DG concept proposed in [3] has
been successfully expanded to include the case of a spa-
tially varying effective mass distribution, while showing
good agreement with the results in [4]. Furthermore, it
was proven that the deployment of a CAP can coun-
teract the inherent stability issues of the DG approach
introduced by the numerical flux, thus, optimizing the
algorithm for time dependent analyses. The transient
simulation with an inhomogeneous distributed effective

Fig. 4: Time dependent carrier distribution n over the com-
putational χ-domain, with a self-consistent Hartree potential
and inhomogeneous effective mass distribution.

mass successfully converged and provided a carrier
distribution over time that complies with the common
literature. As such, the DG approach is well suited to
analyze nanoscale heterostructure devices avoiding the
inherent stability issues by utilizing the CAP.
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