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Abstract—The atomistic investigation of modern nanoscale
devices for RF applications requires time-resolved simulations,
which often come with a high computational burden. Thus, the
effective mass approximation is usually employed to reduce
the complexity and computation times. Here, a novel ap-
proach combining a tight-binding like ansatz with a Quantum
Liouville-type Equation is presented, that can effectively take
into account any arbitrary energy dispersion relation. It is
applied to analyze the charge carrier transport in a DGFET
in a single non-parabolic valley and compared to the parabolic
case for the stationary and transient cases. As it is shown, the
application of the parabolic approximation leads to a severe
underestimation of the current densities and does not capture
distortion effects when RF amplifier operation is considered.

Index Terms—Computational Nanotechnology, Quantum
Transport, Quantum Liouville, Mode Space, DGFET, Non-
Parabolicity, Tight-Binding

I. Introduction

By now, a variety of tools for stationary simulations of
quantum charge carrier transport exist, such as methods
based on non equilibrium Greens function (NEGF) [1]
and density matrix approaches [2]. Previous applications
of stationary fullband methods on quantum confined field
effect transistors have shown that the parabolic approx-
imation of the energy bands severely underestimates the
current density [3]. If the time-resolved behavior is to be
analyzed for e.g. devices operating in the THz regime,
however, the former method becomes less applicable on
account of the severe computational burden of the time-
dependent Greens function [4]. In contrast, approaches
based on Quantum Liouville type Equations (QLTE) have
been shown to be an efficient option for the time-resolved
case but are usually limited to the assumption of parabolic
energy bands. Here, a novel approach based on a QLTE
is presented, where an energy dispersion relation similar
to that of a tight-binding approach is used instead of the
parabolic approximation. By including higher order cosine
terms, i.e. more neighbor atoms, effectively any arbitrary
energy dispersion can be taken into account. Most impor-
tantly, the discretization directly follows from the energy
dispersion and no derivatives need be approximated. The
resulting staggered grid formulation of the QTLE ([5])

can then be used to obtain a discretization pattern on a
conventional uniform grid.

Herein, this formalism is derived starting from the
energy dispersion and ultimately leading to a QLTE for
arbitrary energy bands on a uniform grid. Subsequently
it is applied onto an InAs double gate FET (DGFET)
in combination with a mode-space approach (MSA) [6]
to obtain the characteristic stationary curves when non-
parabolicity in the Γ valley is taken into account. Lastly,
its effects in RF amplifier applications are compared to
the parabolic approximation case.

II. Incorporating non-parabolic energy dispersion into
the QLTE

Introducing non-parabolicity to the density matrix
formalism by simply extending the kinetic part of the
Hamiltonian to higher order derivatives

Ĥkin =

N∑
n=1

~2

2mn
∇2n (1)

has the disadvantage of quickly becoming convoluted after
the Weyl transform with many derivative terms that need
to be approximated as shown in [7]. With the presented
approach, an ansatz based on the tight-binding method is
chosen instead, leading to the energy dispersion

Ĥkin = E(k) = E0 +

N∑
n=0

cn exp(ik(rm − rn)) (2)

assuming s-like orbitals for example with the hopping
terms cn related to the overlap integrals. Assuming domi-
nant charge carrier transport in the x-direction, the kinetic
part of the Hamiltonian can be expressed in terms of N
cosine functions, where N=1 corresponds to the nearest
neighbor approximation, N=2 the next-nearest neighbor
approximation, etc.. The energy dispersion in the Γ-valley
is thus described by

Ĥkin = E(kx)
Γ→X
= E0 +

N∑
n=0

cn · cos(n · a0 · kx) (3)
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with the atomic distance a0 and the coupling terms cn.
Inserting (3) into the well known von-Neumann equation
(VNE) with k and k’ leads to a Liouville operator

L̂kin =

N∑
n=1

cn
2

(
eın∆kx − eın∆kx

) (
eı

n
2 ∆k′

x − eı
n
2 ∆k′

x

)
,

(4)
where the exponential terms can be viewed as the appli-
cation of a shift operation in a discrete Fourier transform.
After a transformation of the operator onto the center of
mass coordinates k̃x and k̃′x and back onto the real space
coordinates χ and ξ, an equation for the density matrix
elements results [5] as given by
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(5)
Here, the two grids p and q as shown in Fig. 1 with
p(χi, ξj) = pi,j and analogous indices for q have been
introduced along with the potential V that contains the
self-consistent Hartree potential, band structure and any
external bias. A similar equation can be set up for
the density matrix elements ρi,j corresponding to the
p grid on the left hand side. Rewriting the equations
in terms of the vectors pi = (ρi,1, . . . , ρi,Nξ

)T and
qi+ 1

2
= (ρi+ 1

2 ,
1
2
, . . . , ρi+ 1

2 ,Nξ− 1
2
)T results in a staggered

grid formulation of the von-Neumann equation

∂

∂t
pi = c1(qi− 1

2
− qi+ 1

2
) + c2(pi−1 − pi+1) + Vipi (6)

∂

∂t
qi+ 1

2
= c1(pi − pi+1) + c2(qi− 3

2
− qi+ 3

2
) + Vi+ 1

2
qi+ 1

2
,

(7)

where only the nearest and next-nearest neighbor have
been included for the sake of clarity. Even though a similar
staggered grid scheme can be obtained by means of a
rigorous derivation of the Wigner Transport Equation, the
occurence of negative charge carrier densities is problem-
atic [8]. By formulating the transport equation in a real
space first and performing a plane wave expansion later,
these problems can be avoided [5]. The coefficients from (3)
directly correlate to the coefficients cn in (6) and (7) that
couple the adjacent grids in transport direction. Therefore,
a discretization pattern is obtained through the energy
dispersion relation alone, opposed to the more common
method of approximating the occuring derivatives as is
done in e.g. [7], [9], [10]. In order to avoid any difficulties
regarding the boundary conditions of the staggered grid
formulation [5], the subgrid q in (7) can be approximated

p1 q1.5 p2 q2.5 p3 q3.5

ξ j

χi

Fig. 1. The staggered grids p and q before the application of a
midpoint rule. The dashed box indicates the computational cell for
the centermost point if only nearest neighbors are considered for
example.

in terms of the subgrid p by the application of a mid-point
rule, leading to a uniform grid:
∂

∂t

pi + pi+1

2
≈ c1 (pi − pi+1)

+ c2

(
pi−1 + pi

2
− pi+1 + pi+2

2

)
+ Vi+ 1

2

pi + pi+1

2
.

(8)
Finally, a plane wave expansion of the density matrix

is performed to facilitate setting up the inflow boundary
conditions [11], resulting in a QLTE with band non-
parabolicity taken into account. If only the first cosine
term, i.e. nearest neighbor is taken into account and the
potential Vi+ 1

2
is approximated by a midpoint rule as well,

the approach is equivalent to the finite volume method
described in [10].

III. Application onto DGFETs
A schematic of the DGFET in question is shown in Fig.

2. Regarding the device parameters, the electron affinity
of the undoped InAs channel is χ = 4.5 eV. For the oxide
and gate material SiO2 and Ag are chosen, respectively,
with a metal work function of ϕ = 4.74 eV assumed for
the latter. The source and drain regions on either end of
the device are n-doped with Ns = Nd = 2 · 10 19 cm3.

An uncoupled mode-space approach is applied ([6], [12],
[13]), essentially decoupling the confinement and transport
directions and leading to a description of the charge
carrier transport in subbands. Because the focus is laid
first and foremost onto including the non-parabolicity in
transport direction, subband eigenvalues and eigenfunc-
tions are assumed for the parabolic case. The resulting
eigenvalue problem is solved by using a Lanczos algorithm
at each iteration with a spatially varying mass taken
into account and Dirichlet boundary conditions on the
outside of the oxide. Energy band non-parabolicity is taken
into account in the transport direction as well as when
determining the density of states and boundary conditions
at the contacts. Regarding the boundary conditions, inflow
boundary conditions at the drain and source contact are
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Fig. 2. Schematic of the DGFET with the oxide shown blue, undoped
channel in yellow and contacts in orange. To facilitate discretization,
all dimensions are given in multiples of a0 = 6 Å.

adopted for the mode-space approach [12], [13]. A complex
absorbing potential (CAP) is added onto the conventional
potential to avoid reflections resulting from the finite
computational domain [14], [15]. Room temperature oper-
ation and ballistic charge carrier transport are presumed
throughout.

IV. Results
Because of the extensive amount of work that has

been done on the conventional Wigner transport equation
(WTE), discretization on a uniform grid can be desirable.
A comparison for the case of the nearest neighbor approx-
imation of the staggered grid formulation from (6), the
uniform grid from (8) and results obtained by a reference
quantum transmitting boundary method [16] shows that
all resulting output curves coincide well(Fig. 3), justifying
the application of the uniform grid description. Therefore,
the second order cosine expansion of the bulk energy
dispersion of InAs is used and applied for the uniform grid
QLTE. As it can be seen from Fig. 4, the dispersion in the
Γ valley can be accurately modeled by just 4 cosine terms.
For demonstration purposes, the second-order coefficients
are utilized.

The self-consistent characteristic output curves are
obtained for two gate voltages. The resulting drain-end
current densities (Fig. 5) for the parabolic QLTE (P
QLTE) coincide with a reference solution obtained by
a finite volume Wigner transport equation (FV WTE)
[9]. However, when non-parabolicity in the transport
direction is taken into account (NP QLTE), much higher
current densities are obtained. In order to study the time-
resolved behavior, the application as an RF amplifier
is studied by keeping the drain-source voltage constant
at Vds = 0.5 V and applying a harmonic gate voltage
Ug = 0.5V +0.1 ·sin(2πtf) at f = 300 GHz. As it is shown
in Fig. 6, the parabolic approximation underestimates the
drain-end current density again but also does not capture
the gain compression during the positive half-wave that
can be seen in the non-parabolic case. The application of a
FFT analysis of the drain-end current densities indicates,
that the inclusion of non-parabolicity increases the non-
linearity in amplifier operation and excitation of higher
order harmonics (Fig. 7).
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Fig. 3. The drain-end current densities for the nearest-neighbor
QLTE on a staggered grid and a uniform grid are in good agree-
ment with reference results obtained by the quantum transmitting
boundary method (QTBM). The drain and source regions have been
lengthened and permittivity is increased towards the contacts to
ensure good convergence for the staggered grid case.
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Fig. 4. Bulk energy dispersion in the Γ valley for InAs as obtained
by a sp3s* tight-binding calculation with the parabolic and non-
parabolic approximation with N = 2 and N = 4 cosine terms.
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Fig. 5. The drain-end current density for the parabolic QLTE
(P QLTE)is in good accordance with a result obtained by a finite
volume Wigner approach (FV WTE). However, the current density
is underestimated by more than 20 % when compared to the non-
parabolic case (NP QLTE).
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Fig. 6. The inclusion of non-parabolicity leads to compression during
the positive half wave. This effect is not seen in the parabolic cases
for the QLTE and finite volume Wigner approach, which coincide
well.
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Fig. 7. The normalized spectra of the drain-end current densities
show that the non-parabolicity leads to an increased excitation of
higher order harmonics in amplifier operation as depicted in the inset.

V. Discussion

The proposed approach was shown to be well suited
to model the stationary and transient charge carrier
transport in semiconductors with non-parabolic energy
dispersion. By utilizing an approach similar to a tight-
binding method, it retains an atomistic description of the
charge carrier transport when applied onto a QLTE. The
band non-parabolicity was shown to significantly affect
the stationary and time-dependent carrier transport, with
an increased excitation of higher-order harmonics in am-
plifier operation. As non-parabolicity in the confinement
direction was neglected here, it should be taken into
account in future works. The approach should be extended
onto heterostructures and multiband models, allowing for
the time-dependent modeling of multivalley transport for
the investigation of e.g. intervalley mixing in resonant
tunneling diodes.
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