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Abstract—We present a quantum transport simulation of
synaptic field effect transistors (FETs) based on two-dimensional
(2D) semiconductors, especially the phosphorene channel as a
representative example, in which the hysteresis of conduction
characteristics due to the channel–gate interface trap is used
as synaptic plasticity. For this purpose we generalized our
previously proposed compact capacitance model for synaptic
FETs to include the quantum tunneling effect based on the
NEGF method. We found that although the hysteresis behavior
is basically reduced when the channel length becomes shorter,
appropriate design of the channel length can be beneficial to
obtain better synaptic weight change due to larger tunneing
leakage current.

I. INTRODUCTION

In recent years, synaptic devices using memristors, two-
terminal devices whose resistance changes according to the
current flowing through them, have been attracting attention,
and are expected to be applied to large-scale integrated neuro-
morphic systems because of their ultra high speed drive, ultra
low power consumption, and high scalability [1], [2].

Two-dimensional atomic film materials, such as graphene,
have been attracting attention as next-generation materials
due to their unique physical characteristics, including notable
electronic properties resulting from their Dirac electron system
[6], [7]. In neuromorphic applications, it is believed that high-
performance synaptic devices can be realized by exploiting
their sensitivity to the surrounding environment, such as charge
trapping, due to their very large surface area relative to volume
[8]. Synaptic graphene FETs and carbon nanotube FETs have
been experimentally fabricated using hysteresis of conduction
properties due to interface trapped charges [9], [10]. For
the numerical simulation of such devices, we have previously
proposed a compact model for synaptic FETs using interface
traps, and used this model to explore the synaptic FET property
of graphene and graphene nanoribbons.

In our previous study we have assumed that the graphene
channel is basically infinitely long and the interface trap is
uniformly distributed over the graphene channel, which make
it possible to simulate within the compact model. However,
in reality it is also important to study the influence of fi-
nite channel length and influence of the inhomogeneous trap
distribution. With such motivation in mind, in this study we
study the effect of the interface trap position in the hysterisis
behavior of the 2D channel FET.

Fig. 1. Model diagram of the FET assumed in this study. Double gating
improves the gate voltage effect and doubles the interface area. In addition,
it is thought to be able to prevent disturbances from factors other than the
channel-oxide film interface.

Fig. 2. Energy band diagram of FET and schematization of the interfacial
trapping/de-trapping process at different bias conditons: (a) Uit < EF, and
(b) Uit > EF. This figure is based on Figure 2 (c), (d) in Reference [14].

II. MODEL AND METHODS

Figure 1 shows a schematic diagram of the device structure
considered in this study. As a representative model of the chan-
nel material we consider monolayer phosphorene. Figure 2
shows the energy band diagram of FET and schematization
of the interfacial trapping/de-trapping process at different bias
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conditons.
Electronic properties of phosphorene shown in Fig. 1 (left)

can be analyzed effectively using the tight-binding (TB) model
[11], where the band structure is calculated by solving the
eigenvalue problem H(k) |ψlk⟩ = El(k) |ψlk⟩ with the k =
(kx, ky) dependent 4 × 4 TB Hamiltonian H(k). Then the
electronic band structure is obtained as shown in Fig. 2, where
the band gap energy is estimated to be 1.52 eV. Although
such matrix eigenvalue problem can be solved using standard
eigensolver, since the method capable of solving eigenvalue
problem efficiently is needed, it is also interesting to introduce
quatum computational approach to calculate the electronic
band structure materials based on tight-binding model, espe-
cially using Variational Quantum Eigensolver (VQE). VQE is
one of hybrid quantum-classical algorithms and can compute
the ground state based on the variational principle, combined
with classical optimization. To calculate the excited stae,
variational quantun deflation algorithm (VQD) is available
[12].

Then electronic transport properties of phosphorene TFET
can be modeled by the following two-band effective mass
equation model [13].[
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where εc(ky) ≡ ℏ2k2y/(2m∗
c,y) and εv(ky) ≡ ℏ2k2y/(2m∗

v,y)
are the transverse energy dispersions for the conduction and
valence bands, respectively, and the effective masses for the
conduction (valence) band are m∗

c(v),x and m∗
c(v),y for x and

y directions. We choose the x direction to be the transport
direction, which is either the armchair or zigzag direction. The
conduction band effective masses are extracted from the TB
band structure as m∗

c = 0.152m0 and 0.763m0 for armchair
and zigzag directions, respectively, and corresponding valence
band values are m∗

v = 0.203m0 and 1.526m0, respectively.
The parameter C is the inter-band coupling constant [13].

We descretize the above two-band effective mass equations
based on the finite difference method and then employ the
standard NEGF method along with the Poisson’s equation. In
the presence of the interface trap sites, the Poisson’s equation
can be expressed as the capacitance model generalized to
include the interface trap charge, which can be schematically
expressed as shown in Fig. 3. The site charge Qi within the
ith mesh site is calculated based on the NEGF method self-
consistently with the Poisson’s equation

[C]V = Q (V) +Qit (V) , (3)

Fig. 3. Schematic illustration of the capacitance model generalized to include
the interface trap charge, where C is the channel capacitance derived by finite-
differentiating the Poisson’s equation, and COX is the oxide layer capacitance.
In this illustration there are only a few mesh sites within the channel but in
the actual simulations we assume that the mesh spacing is 0.25 nm through
the simulation region.

which is solved iteratively following the Newton’s scheme as
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In order to study the trap-induced hysterisis behavior of the
phosphorene FET based on the NEGF method, we generalize
our proposed formalism in Ref.[15] to describe the interface
charge density profile (vector) at the jth voltage time step Q

(j)
it

as

Q
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it +∆Q

(j)
it , (9)
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)
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× (1− exp(−∆tG/τtrap)) + E
(j−1)
it (r) (12)

∆tG =
∆VG
χsweep

(13)

where Eit is the top of the occupied interface level mea-
sured from the Dirac point in graphene, VC(VG) is the
graphene channel potential for a given gate voltage VG,
Dit(E) [eV−1·m−2] is the interface density of states, τtrap
[ms] is the trapping/de-trapping time constant, and χsweep

[V/ms] is the gate voltage sweep rate. On the basis of the
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experimental results of previous studies, Dit(E) is treated as
energy independent constant. We note that ∆tG is interpreted
as the time required to sweep the gate voltage by ∆VG, and
the factor 1− exp(−∆tG/τtrap) is the the probability that the
interface states are actually trapped during the gate voltage
sweep by ∆VG. The quantities such as Q

(j)
it and VC(r, V

(j)
G )

in the above equations are calculated sysmatically based on
the NEGF method [16].

III. RESULTS AND DISCUSSIONS

In Fig. 4 we show the typical result of the calculated
potential profiles for the gate voltage VG forward scan from
0 to 1.5 V, followed by the backward scan from 1.5 to 0
V, where the channel length is 5 nm, and the gate insulator is
SiO2 with the thickness tox = 1 nm. The source and the drain
region are n-doped with the doping density ND = 3 × 1017

m−2. The interface density of states is Dit = 0.3Dit0 with
Dit0 = 3.75 × 1016 m−2eV−1, trap/detrap time constant is
τtrap = 100 ms, and the gate sweep rate is χsweep = 0.01
V/ms.

Fig. 4. Calculated potential profiles for the gate voltage VG forward scan
from 0 to 1.5 V, followed by the backward scan from 1.5 to 0 V, where the
channel length is 5 nm, the interface density of states is Dit = 0.3Dit0 with
Dit0 = 3.75 × 1016 m−2eV−1, trap/detrap time constant is τtrap = 100
ms, and the gate sweep rate is χsweep = 0.01 V/ms.

Fig. 5. Conduction characteristics of phosphorene FETs under a linear gate
voltage sweep VG 0 to 1.5 V. Drain voltage is VD = 0.3. Results for different
values of the interface density of states are compared.

Fig. 6. Conduction characteristics of phosphorene FETs under a linear gate
voltage sweep VG 0 to 1.5 V. Drain voltage is VD = 0.3. In the top panel
the results for different channel length are compared. In the bottom panel
the same results are plotted in the linear scale to emphasize the result for
Lch = 2.5 nm.

247



As we can see in Fig. 4, the potential barrier heights at the
initial VG = 0 V and at the final VG = 0 V (after the backward
sweep) are different, and barrier height at the final VG = 0 V
is heigher than the initial one. This is due to the accumulated
trap change, which suppresses the gate voltage induced change
of the potential value. Such behavior results in the hysteresis
behavior of the ID-VG characteristics as shown next.

In Fig. 5 we show the conduction characteristics under the
forward VG sweep from 0 to 1.5 V followed by the backward
sweep from 1.5 to 0 V. Drain voltage is VD = 0.3. Results for
different values of the interface density of states are compared.
Here we can see the significant hysteresis behavior, and the
current difference between the initial VG = 0 and the final
VG = 0 is larger for larger Dit. Next in Fig. 6 we show the
forward and backward VG sweeped results for three different
chanel length Lch. In the top and the bottom panels the
calculated current values are plotted in the log scale and the
linear scale, respectively. Here we can see in the top panel that
the showter channel length results in the reduced hysteresis
behavior. However, it is noted that for the longer channel
length the current values at VG = 0 is deep in the off-regime,
which is disadvantageous for the synaptic device application
because of the too small current. On the other hand, when
the channel length is short, the current values at VG = 0 is
relatively large. Therefore, although the hysteresis behavior is
basically reduced when the channel length becomes shorter,
appropriate design of the channel length can be beneficial to
obtain better synaptic weight change due to larger tunneing
leakage current.

IV. CONCLUSION

We presented a quantum transport simulation of the phos-
phorene channel synaptic field effect transistors (FETs), in
which the hysteresis of conduction characteristics due to the
channel–gate interface trap is used as synaptic plasticity. For
this purpose we generalized our previously proposed compact
capacitance model for synaptic FETs to include the quantum
tunneling effect based on the NEGF method. We found that
although the hysteresis behavior is basically reduced when
the channel length becomes shorter, appropriate design of
the channel length can be beneficial to obtain better synaptic
weight change due to larger tunneing leakage current.
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