
Statistical Modeling of Metal-Oxide RRAM
SET/RESET Behavior Using Deep Neural Networks

Aarav Wattal*
Dept. of Electrical Engineering

Stanford University
Stanford, CA

awattal@stanford.edu

Akash Levy*
Dept. of Electrical Engineering

Stanford University
Stanford, CA

akashl@stanford.edu

Zainab Faryal Khan
Dept. of Electrical Engineering

Stanford University
Stanford, CA

zainabk@stanford.edu

Abstract—We propose the use of end-to-end deep neural
network (DNN) models to predict the statistical behavior of
resistive RAM (RRAM) during SET/RESET programming. We
demonstrate that such models may accurately generate the prob-
ability distributions describing the final conductance, without the
need for fitting parameters by hand (R2 = 0.983 for SET, R2

= 0.817 for RESET). We also attempt to connect some of our
models’ qualitative behavior to physics-based understanding of
RRAM SET/RESET processes. Finally, we describe a use case in
which our models serve as key testing infrastructure in functional
verification of a multiple-bits-per-cell RRAM controller.

Index Terms—resistive RAM (RRAM), non-volatile memory,
deep neural network, statistical device modeling

I. INTRODUCTION

The recent proliferation of low-power system-on-chip (SoC)
designs has led to a rise in demand for embedded non-volatile
memories to reduce the overhead associated with moving data
to and from off-chip memories [1], [2]. Metal-oxide Resistive
RAM (RRAM) is one of the most promising candidates due
to its low cost and compatibility with the CMOS back end
of line [3]. Additionally, RRAM has the potential to store
multiple bits per cell, thereby improving density for high-
capacity on-chip storage [4]. However, a major challenge
with RRAM is that its behaviors are highly stochastic and
therefore difficult to understand and model [5], [6]. This
paper proposes two end-to-end deep neural network (DNN)
models to rapidly make well-fitted empirical predictions about
RRAM’s nonlinear and stochastic behavior. We connect our
results with previously-developed physics-based explanations
of RRAM resistive switching. Finally, we show how our
models can serve as functional verification components for
a digital multiple-bits-per-cell RRAM controller.

II. BACKGROUND

To quantify SET/RESET variability, we start by collecting
data on a 1T1R RRAM array (reported in [7]), shown in Fig. 1,
by performing sweeps of SET/RESET pulses across different
combinations of pulse parameters, followed by READ pulses.
For the SET sweep, we start with cells in the high-resistance
state (HRS), then apply different wordline voltages (VWL),
bitline voltages (VBL), and pulse widths (tpw). Conversely,
for the RESET sweep, we start with cells in the low-
resistance state (LRS), then apply different combinations of
{VWL, VSL, tpw} as in the SET sweep (VSL is the source-
line voltage). The parameter ranges we sweep over in the
SET/RESET sweeps are given in Table I. Note that pulse
width is swept (roughly) exponentially, with six possible
values: {20 ns, 40 ns, 100 ns, 200 ns, 400 ns, 1000 ns}. We
measure the resistance before and after each pulse, and the

*Aarav Wattal and Akash Levy contributed equally to this work.

SET/RESET sweep datasets each have 32,768 pulses logged
in total.

(a) (b)

Fig. 1: (a) 1T1R RRAM cell array, showing word lines,
bit lines, and a shared source line for every two bit-lines,
excerpted from [8]. (b) Structure of HfO2 1T1R RRAM,
reproduced from [3] (dashed red rectangle in (a))

Parameter Start Stop Step
Pulse Width (ns), tpw 20 1000 ×2 (or 2.5)

Wordline Voltage (V), VWL 0.5 3.4 +0.1
Bitline Voltage (V), VBL 0.5 3 +0.5

TABLE I: Table showing the sweep parameter ranges

III. PROBLEM FORMULATION AND MODELING
METHODOLOGY

A. Problem Formulation

The goal is to estimate the final conductance (gf ) of a
cell as a probabilistic function of the initial conductance (gi),
wordline voltage (VWL), bitline voltage (VBL), and pulse
width (tpw):

FSET (gi, VWL, VBL, tpw) = P (gf ) (1)

Note that we choose to use conductance rather than resistance,
because this value is more easily bounded and has behavior
with less nonlinearity. Similarly, for RESET, we can write the
function as:

FRST (gi, VWL, VBL, tpw) = P (gf ) (2)

We can approximate both of these functions using neural
networks that attempt to generate the probability distribution
of the final conductance. In our dataset, the conductance
values are scaled by a constant factor to normalize them
between 0 and 1. The dataset is split into training data (60%),
validation data (10%), and testing data (30%).
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B. Modeling Methodology

We develop two different small machine learning models
(shown in Fig. 2) to make predictions on the final conductance
following a SET/RESET pulse. The first model is a multi-
layer perceptron (MLP) (Fig. 2a), a simple feed-forward
artificial neural network that makes predictions without es-
timating variability [9]. We train this network to predict final
conductance values from the pulse width, wordline voltage,
bitline/source-line voltage, and initial conductance. We train
this network to predict final conductance values from the
pulse width, wordline voltage, bitline/source-line voltage, and
initial conductance. The output is a single number (gf ) for
the predicted final conductance value, and P (gf ) = δ(gf ),
δ(g) is the Dirac delta function. The second model is a Prob-
ability Density-based Network (PDN) (Fig. 2b) that predicts
a Gaussian probability distribution [10], P (gf ) = N (gf , σf ),
where N (µ, σ) is the normal distribution with mean µ and
standard deviation σ. Details of model architecture/training
are provided in the caption of Fig. 2.
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Fig. 2: (a) Model 1 is a multi-layer perceptron (MLP) with
3 hidden layers: the first with 100 neurons, the second with
67, and the third with 46. We use the Stochastic Gradient
Descent (SGD) optimization algorithm with a mean-squared
error (MSE) loss function, a learning rate of 0.01, and early
stopping with validation data to avoid over-fitting. (b) Model 2
is a small probability density-based network (PDN), consisting
of an input layer, a hidden layer with 10 neurons (tanh
activation function), and two output neurons for the mean and
standard deviation. The model is trained with 384 batches
(64 samples each) and uses Adam optimization algorithm
(γ = 0.01, β1 = 0.9, β2 = 0.999) with negative log-likelihood
loss function: L = − logP (y|x).

IV. RESULTS AND OBSERVATIONS

Both the MLP and PDN are trained and tested on the
same set of preprocessed data. For the SET sweep data, the
MLP makes final conductance predictions with a root mean
squared error (RMSE) of 5.918%, while the PDN makes
predictions with an RMSE of 6.557%. When tested on the
subset of SET data that yields >20% changes in conductance
in response, the PDN predicts with an RMSE of 4.971%. On
the RESET sweep data, MLP yields an RMSE of 3.839%,
PDN yields an RMSE of 4.420%. For both models, there is
an overall strong correlation between the actual and predicted
conductance values for SET (R2 = 0.983 for MLP, R2 = 0.976
for PDN) and moderate correlation for RESET (R2 = 0.817 for
MLP, R2 = 0.742 for PDN), since RESET is a more stochastic
process than SET [11].

As shown in Fig. 3, the SET data with intermediate
bitline voltage has the greatest predicted standard deviation.

Physically, this is because intermediate VBL often yields a
physical state in which the RRAM is transitioning between
being thin filament(s) dominated by electron hopping to being
thicker filament(s) dominated by metallic behavior [12]. A thin
filament state means that the conductance is more sensitive
to small changes in filament geometry. Wordline voltage is
negatively correlated to predicted variability; as the wordline
voltage increases, the conductive filament effective width
increases and the filament becomes more metallic. While the
pulse width can influence the resistive switching of the cell,
the measured data and our models indicate that the variability
is much more dependent on the voltages/currents in the device.
As shown in Figs. 4 and 5, the lower bitline voltage values
were predicted at a lower accuracy, which we theorize happens
as the formation of new filaments introduces an additional
source of randomness. Fig. 6 demonstrates that our RESET
data models have better RMSE but worse correlation than our
SET data models. This is because most RESETs are not diffi-
cult to predict, either resulting in a fully high-resistance state
or in no change at all. However, some outliers do exist at the
high wordline and high bitline voltages, likely because under
these conditions, there exists rapid migration of ions/oxygen
vacancies that constitute the conductive filament(s). Fig. 7
provides a visual depiction of the SET sweep data’s predicted
final conductance distribution compared to the measured final
conductance distribution for a particular tpw and gi.
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Fig. 3: The PDN is trained on the SET dataset and utilized to
predict mean final conductance (mu) and standard deviation
(sigma). Predicted mu vs. sigma plots are colored by input
variables: (a) pulse width, (b) wordline voltage, (c) bitline
voltage, and (d) pre-read conductance. (a) Pulse width does
not demonstrate a significant effect on predicted sigma. (b)
There is a negative correlation between wordline voltage and
sigma. (c) Pulses with mid- and high-range bitline voltages are
the hardest to make predictions about. (d) Positive correlation
exists b/w pre-read conductance and predicted sigma.

A. Multiple-Bits-per-Cell RRAM Controller Verification

The DNN models presented here can be instrumented as fast
verification components for circuits involving RRAM arrays,
as depicted in Fig. 8. During functional verification of a
digital multiple-bits-per-cell RRAM controller, for example,
the DNN models can be queried to get the predicted final
conductance distribution based on a pulse. By sampling the
RRAM conductance from these distributions after each pulse,
an on-chip write-verify process can be accurately modeled and
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Fig. 4: The PDN’s predicted final conductance values are
plotted against the actual final conductance data for the SET
dataset. The results are color stratified by input variable: (a)
pulse width, (b) wordline voltage, (c) bitline voltage, (d)
pre-read conductance. (b) shows that low wordline voltages
are difficult to predict accurately, and (c) indicates that low
and medium bitline voltages are easier to predict than high
voltages. (d) indicates that the final conductance states of cells
with a high pre-read conductance are more difficult to predict.
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Fig. 5: PDN results for predictions on SET data with >20%
change in scaled conductance (where the pulse has a signif-
icant impact on the cell conductance). The data are depicted
in plots corresponding to input variables: (a) pulse width,
(b) wordline voltage, (c) bitline voltage, and (d) pre-read
conductance. Despite the significant change in conductance,
the model can accurately predict final conductance, with the
low bitline voltage data in (c) being slightly harder to predict.

validated with realistic behaviors [13]. Furthermore, the write-
verify process can be optimized for the RRAM technology that
is characterized.

V. CONCLUSION

Our neural network models prove effective in predicting
the final conductance value of an RRAM cell following a
SET/RESET pulse as well as its probability distribution. The
models’ ability to make predictions over a broad range of
pulsing conditions enables functional verification of circuit
blocks containing RRAM arrays. These DNN models can be
fitted quickly to experimental data without prior knowledge of
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Fig. 6: The PDN is trained on the RESET dataset and tested to
predict final conductance. The predictions are plotted against
the actual conductance values, colored by (a) pulse width,
(b) wordline voltage, (c) source-line voltage, and (d) pre-read
conductance. Aside for some of the data with high wordline
voltage and high source- line voltage, the model successfully
predicts most of the conductance values with low standard
deviation.
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Fig. 7: Example plots showing the predicted vs. measured
conductance for SET sweep, filtered for tpw = 100 ns and
lowest 25% of initial conductance. Different VBL voltages
are stratified by color as a visual aid. The VWL and VBL are
graphed on the x- and y-axes, with the z-axis in (a) repre-
senting scaled predicted conductance and in (b) representing
scaled measured conductance.
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the RRAM’s geometry or electrical behaviors. They serve as a
powerful empirical tool for enabling the further development
of RRAM technology.
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