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Abstract— This work describes a novel simulation approach 

that combines machine learning and device modeling 

simulations. The device simulations are based on the quantum 

mechanical non-equilibrium Green’s function (NEGF) 

approach and the machine learning method is an extension to a 

convolutional generative network. We have named our new 

simulation approach ML-NEGF and we have implemented it in 

our in-house simulator called NESS (nano-electronics 

simulations software). The reported results demonstrate the 

improved convergence speed of the ML-NEGF method in 

comparison to the ‘standard’ NEGF approach. The trained ML 

model effectively learns the underlying physics of nano-sheet 

transistor behaviour, resulting in faster convergence of the 

coupled Poisson-NEGF simulations. Quantitatively, our ML-

NEGF approach achieves an average convergence acceleration 

of 60%, substantially reducing the computational time while 

maintaining the same accuracy. 
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I. INTRODUCTION 

 The silicon nanowire and nanosheet transistors have a 
wide spectrum of promising applications [1], such as current 
field-effect transistors [2] and photovoltaics [3]. Moreover, 
the state-of-the-art CMOS technologies are based on single 
or stacked configurations of nanosheet or nanowire 
architectures [4]. However, despite the recent advances in 
technology, there is still room to improve the fabrication 
process and to optimise device performance, for example, by 
reducing power consumption and reducing device-to-device 
variability during the fabrication process.  

 From a practical point of view, simulations and modelling 
transistors are the most time-efficient and cost-effective 
approach to evaluate the performance and the output 
characteristics of transistors. The aim is to have a simulation 
platform that is fast, accurate, and reliable in order to aid the 
improvement of device design, predict device performance 
(current-voltage characteristics) and extract important 
Figures of Merit (FoM). 

 The main aim of this work is to investigate the possibility 
of  significantly improving or even replacing numerical 

Technology Computer-Aided Design (TCAD) device 
simulations with a convolutional autoencoder (CAE) [5] [6] 
[7].  To test our idea, we have developed a new simulation 
approach based on the combination of TCAD and machine 
learning methods. The current state of the art of TCAD 
simulations is based on the Non-equilibrium Green’s 
Function (NEGF) formalism that can capture the quantum 
mechanical physical effects, such as confinement and carrier 
tunnelling in ultra-scaled transistor (with channel lengths that 
are shorter than 10 nm). To enhance the capabilities of the 
NEGF method and decrease the computational time of our in-
house Nano Electronics Simulation Software (NESS) [8], we 
combine machine learning with our existing NEGF simulator 
implemented in NESS. We have called the new simulation 
approach ML-NEGF.  

 Our results show the potential of using the ML-NEGF 
methodology to significantly reduce the device simulation 
computational cost without compromising the accuracy of 

Fig. 1. Diagram of the n-type silicon (Si) nanosheet transistor 

with channel cross section of 3 nm x 12 nm (a) and length of full 

device 22 nm (b). Gate length is 16 nm and the source/drain have 

length of 3 nm each. The channel doping is 1e16 cm-3 and the 

contacts (source and drain have) are 1e20 cm-3. The oxide is SiO2 

with thickness of 1nm everywhere around the device.  
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physical results deriving from the ‘standard TCAD’ 
simulations.  

II. DEVICE STRUCTURE  

 To test our new simulation ML-NEGF methodology we 
have designed a device transistor structure that corresponds 
to the most advanced technologies of 3 nm node and beyond. 
Fig. 1 shows the nanosheet transistor geometry created using 
the NESS structure generator. The gate is all around the 
channel and the channel length is LCh = 16 nm, with source 
and drain lengths of 3 nm each, hence the total length of the 
device is 22 nm. The channel cross-section is rectangular with 
dimensions of 3 nm x 12 nm, the oxide material is SiO2 and 
its thickness is 1 nm. The channel doping is 1e15 cm-3 and the 
source and drain regions have doping of 1e20 cm-3.  

III. SIMULATIONS METHODOLOGY 

All numerical simulations in the work are performed by 
utilising the NEGF simulator implemented in our in-house 
code NESS [8]. The NEGF implementation is based on the 
effective mass approximation. Our NEGF solver can 
compute ballistic and scattering transport in various devices 
and materials. In this paper, we have used the ballistic version 
of the NEGF solver to test our idea. However, we would like 
to emphasise that our methodology is valid even if we use the 
simulations that include the electron-phonon and surface 
roughness scattering mechanisms in the active region of the 

device.  

The NEGF solver is linked to a 3D Poisson solver and both 
solvers are connected in a self-consistent loop. The effective-
mass Hamiltonian, and correspondingly the NEGF solver, 
requires potential as an input that is provided by the Poisson 
solver. Correspondingly the Poisson solver requires a charge 
that is provided by the NEGF solver. Also, the NEGF 
formalism allows to compute device characteristics, such as 

current-voltage curves (ID-VG and ID-VD).  From the ID-VG 

curve, we can extract important FoM, such as OFF-current 
(IOFF) and ON-current (ION), subthreshold slope (SS) and 
voltage threshold (VTH). In previous papers, we have shown 
that it is possible to train a neural network (NN) by using as 
input date key figures of merit such as subthreshold slope, 
drive current, leakages current to predict another key 

parameter such as voltage threshold [9].  

In this paper, we have utilised a machine-learning model 
inspired by denoising autoencoders. The ML model is shown 
in Fig. 2. The model's architecture is based on a convolutional 
denoising autoencoder network augmented by methods 
stemming from transformer networks. The basic structure 
was chosen to be fully convolutional as this guarantees model 
generality and improves robustness to different device 
geometries. The augmentations, borrowed from transformer 
networks, are the inclusion of location encodings in the initial 
input. A residual connection between the input and output of 
the model was also introduced to reduce the solution domain 
to the change between initial and final NEGF-Poisson 
iterations. The output of the models consists of a single 
channel matrix, which represents a normalised field of 
potential or charge. The output is assumed to be normalised 

with respect to the mean and deviation of the input. 

 
Fig. 2. A diagram of the convolutional autoencoder structure. It 

consists of N encoder blocks and N-1 decoder blocks and a final 

convolutional layer.  
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Fig. 3. Location maps in X and Y directions. X is the transport 

direction with length of 22 nm and Y is the longer cross-section with 

is 14 nm long. The colour map shows the location of the kernel in 

relation to the model. Numbers and lines show the rough splitting 

of data. 

Fig. 4. Validation Loss of the model and a function of the Epochs 

(steps) of the convolutional autoencoder.   
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The model can be constructed using N number of encoder 
and decoder blocks, to extract a latent space representation of 
the input and apply relevant transformations in the decoder 
section. Each block consists of a convolution, batch 
normalisation, dropout and activation function. We chose the 
LeakyRelu function as the activation function in the encoder 
section as it has a high gradient. One could also introduce 
residual connection within the network to counteract the 
diminishing gradient problem. However, due to the small 

depth of the network, N=3, this was not implemented.  

A set of location matrices, presented in Fig. 3, was added 
to hint the location of the kernel to the model. The location 
encodings were artificially generated, by making a gradient 
map between 0 and 1 in each of the basis directions (X, Y, Z). 

The range between 0 and 1 was chosen to maintain generality. 

The main aim is to train an ML model to predict the 
difference between the 3D spatial charge and the potential 
distributions of the first and final Poisson-NEGF self-
consistency iterations inside the whole of the device. As an 
input to the autoencoder-accelerated ML-NEGF method, we 
provided the charge and potential obtained from the initial 
ballistic Poisson-NEGF iteration of the self-consistent loop. 
The input of the model is a 7-channel image generated from 
information produced by an initial NEGF iteration. The first 
two channels are a normalised 2D image slice of potential and 
of charge in logarithm scale. The next two channels are the 
drain and gate voltages. The final 3 channels, two of which 
are shown in Fig. 3, are the location maps used by the kernel. 
Each square represents the chosen value for a specific device 
location and the colour bar gives the heat map of those values. 

The model output can then be used as an input to the 
‘standard’ NEGF simulations to reduce the number of self-
consistent Poisson-NEGF iterations, which leads to a 
significant reduction of the simulation time. The fully trained 
model can be examined as a kernel-based analytical 
representation of the NEGF solver. The solution of which is 
the forward pass of the ML model. Computationally, the cost 
of this is negligible if compared to the cost of utilising the 
NEGF solver. Therefore, this method, once trained, is 
computationally efficient and can be used to accelerate NEGF 

simulations.  

IV. SUMULATION RESULTS 

In order to validate our ML-NEGF model, input and target 
data was generated by our ‘standard’ NEGF simulation. The 
obtained data was divided into two sets: training and testing. 
The training set is 70%, and the testing set is 30% of the full 
data. The training set is used to train the ML model. The loss 
characteristic obtained from the training process is shown in 
Fig. 4.  

Fig. 4 shows the evolution of the mean square error 
(MSE) as a function of the epochs (training steps).  The model 
was trained for 500 epochs, where it reached a point of 

 

 
Fig. 5. Comparison of charge distribution (top row) and potential 

distribution (bottom row) in a XY plane along the transport direction, 

between the ML-NEGF and ‘standard’ NEGF simulations. The 

charge has the highest value in the source and drain region and the 

highest potential in the middle of the channel.  

 
 

Fig 6. Comparison of the current voltage characteristic (ID-VG 

curves) for both the ML-NEGF and NEGF methods, as a function 

of the gate bias (VGS) at fix drain bias (Low =0.05V and High = 

0.7V). 

 

Fig. 7. Comparison of the simulations of self-consistent iterations 

between ML-NEGF and NEGF (ballistic), as a function of the gate 

bias (VGS). 
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saturation. The number of 500 epochs was discovered 
empirically. The training loss follows a typical trend, where 
it shows significant oscillation and an exponential decrease 
in around 100 epochs, followed by a reduction in training 
speed between 100 and 400 epochs. After 400 epochs the 

MSE value has saturated (0.02 MSE).  

Fig. 5 shows the comparison between the 2D charge and 
potential distribution in the middle of the channel, along the 
transport direction, for the ML-NEGF simulations and the 
target scalar fields produced by the ‘standard’ NEGF method. 
Consistent with the device structure and the doping profile 
along the device, the charge value is the highest in the source 
and the drain region and the smallest in the channel section 
of the device. Also, consistent with the device physics, at low 
gate biases voltages, below 0.4V, the potential has the highest 
value in the middle of the channel. From the results in Fig. 5, 
it can be concluded that the charge and the potential 
distribution obtained from the ML-NEGF method are 
identical to those extracted from NEGF. Hence, it can be 

concluded that our convolutional NN is indeed well trained.  

In Fig. 6, we have plotted and compared the ID-VG curves 
for both the ML-NEGF and ‘standard’ NEGF approach, at 
low (VD=0.05V) and high (VD=0.7V) drain bias. From the 
results in Fig. 6, it is evident that both methods produced 
identical ID-VG curves and, hence, the FoMs, that can be 
extracted, will be also identical. The results in Fig. 5 and Fig. 
6 show that our NN used in the ML-NEGF method can 
reproduce not only physical prosperities but also key device 

characteristics. 

Once the ML model is trained, we wanted to evaluate and 
compare the convergence behaviour for both cases. Fig. 7 
shows the number of self-consistent interactions as a function 
of gate voltage (VGS), at low (VD=0.05V) and high (VD=0.7V) 
drain bias.  From the data in Fig. 7, it can be concluded that 
overall, the ML-NEGF method requires a smaller number of 
iterations in comparison to the NEGF method. Specifically, 
at up to 0.2 VGS both methods have almost identical iterations. 
However, when the VGS has values above 0.2V, the ML-
NGEF simulations (see the red and orange curves in Fig. 7) 
show a consistently lower iterations number than the 
‘standard’ NEGF method. For example, the difference 
between both methods is well pronounced at VGS=0.8V. At 
low drain bias (VD=0.05V), ML-NEGF (orange curve) 
converges in 10 iterations, while the conventional NEGF 
method (blue curve) needs 18 iterations. At high (VD=0.05V) 
drain bias, ML-NEGF (red curve) requires 7 steps and the 
NGEF method (green curve) converges after 15 steps. Hence, 
in both cases the ML-NEGF approach achieves an average 
convergence acceleration of 60%, substantially reducing the 
computational time, while maintaining the same accuracy.  

V. CONCLUSIONS 

In this work, we have reported a combined machine 
learning and device simulation computational approach that 
allows us to simulate the device characteristics (current-
voltage) of Si nanosheet transistors. Our machine learning 
method is based on a convolutional neural network and 
autoencoder architecture. Results obtained from the ML-

NEGF approach led to the following conclusions.  

Firstly, using the autoencoder-accelerated ML-NEGF 
method instead of the standard TCAD (NEGF) simulations in 
principle could significantly decrease the computational time 
and shorten the research and development process. For 
example, the ML-NEGF approach achieves an average 
convergence acceleration of 60%, while maintaining the 
same accuracy. Secondly, our autoencoder-accelerated ML-
NEGF method can reproduce not only the device 
characteristics but also 3D charge density and potential 
distribution in the whole device. Lastly, similar ML based 
approach can be used to describe material properties, such as 
resistance in metal nanowires that cannot be described by 
non-parametric methods, such as a general linear model. 
However, it needs to be noted that the predictivity of the ML-
NEGF method can be improved even further by providing 
more data, using different pre-processing schemes and 
attempting alternative network architectures. Indeed, all these 
options are currently under investigation. 
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