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Abstract—This paper demonstrates the learning of the 

underlying device physics by mapping device structure images 

to their corresponding Current-Voltage (IV) characteristics 

using a novel framework based on variational autoencoders 

(VAE). Since VAE is used, domain expertise is not required and 

the framework can be quickly deployed on any new device and 

measurement. This is expected to be useful in the compact 

modeling of novel devices when only device cross-sectional 

images and electrical characteristics are available (e.g. novel 

emerging memory). Technology Computer-Aided Design 

(TCAD) generated and hand-drawn Metal-Oxide-

Semiconductor (MOS) device images and noisy drain-current-

gate-voltage curves (IDVG) are used for the demonstration. The 

framework is formed by stacking two VAEs (one for image 

manifold learning and one for IDVG manifold learning) which 

communicate with each other through the latent variables. Five 

independent variables with different strengths are used. It is 

shown that it can perform inverse design (generate a design 

structure for a given IDVG) and forward prediction (predict 

IDVG for a given structure image, which can be used for compact 

modeling if the image is treated as device parameters) 

successfully. Since manifold learning is used, the machine is 

shown to be robust against noise in the inputs (i.e. using hand-

drawn images and noisy IDVG curves) and not confused by weak 

and irrelevant independent variables. 
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I. INTRODUCTION 

UE to the ever-more powerful machine learning 

techniques, Technology Computer-Aided Design 

(TCAD) has been a cost-effective tool that can provide 

abundant data to augment machine learning (TCAD-

augmented ML) in semiconductor device design automation. 

It has been used for defect analysis [1]-[6], device 

characteristic predictions [7][8], device/circuit manifold 

learning [9]-[11], inverse design [12], and surrogate model 

development [13]-[15].  

However, to the best of our knowledge, all studies so far 

use either device electrical characteristics (e.g. Current-

Voltage (IV) curves, Capacitance-Voltage curves (CV), 

threshold voltage (VTH)) or numerical description of the 

principal characteristics (e.g. gate length, LG) of the device 

structures as the inputs to ML and no study has been 

performed to correlate the device image to its electrical 

characteristics. 

For any novel device which is not well understood, it is 

difficult to extract the principal characteristics from its 

structure image. It is also possible that such characteristics 

cannot be extracted easily (such as in the geometry of an 

optimized multiplexer in photonics [16]). Moreover, some 

parameters which are important to human eyes (e.g. gate 

poly-Si thickness) are weak and irrelevant independent 

variables to the IV. Therefore, it is important to investigate 

the possibility of learning the underlying device physics using 

images in which domain expertise is not used. If this is 

successful, it will create a novel approach to augment 

traditional compact modeling by using novel device images 

(instead of parameters such as LG) as the input to a compact 

model to predict the electrical characteristics before the 

physics of the novel device is understood.  

 In this paper, we demonstrate that it is possible to train a 
machine to understand the underlying device physics and 
correlate the structure image with the electrical characteristics. 
We show that the machine is not confused by weak and 
irrelevant independent variables and is robust to noise. 
Minimal domain expertise is required to preprocess the data. 
The machine can be used to perform inverse design and 
forward prediction. While a traditional MOSFET structure 
and its IDVG are used as a demonstration, such an approach is 
expected to be useful to help understand the physics of novel 
devices (e.g. using enough SEM/TEM images and the 
corresponding IV to understand the behavior of a novel 
emerging memory). 

II. DATA GENERATION AND MACHINE BUILDING 

Planar MOSFETs are used in this study. This is because 
the 2D cross-section of planar MOSFETs is more 
complicated than the cross-section of FinFET and nanowire 
due to the existence of a lightly doped drain (LDD) and the 
lack of symmetry in the vertical direction. Therefore, it is a 
better test of the capability of the approach. 2D cross-section 
is used because 3D images are generally not available in the 
experiment. Moreover, both well-behaved and leaky planar 
MOSFETs are used. This is to demonstrate that the machine 
can learn the complex underlying physics instead of just a 
simple compact model of a well-behaved transistor, thus, it 
has the potential to learn non-transistor physics. It should be 
noted that, unlike most compact models which are developed 
for well-behaved devices, Technology Computer-Aided-
Design (TCAD) simulation is valid for both well-behaved 
and leaky devices as long as the appropriate models are 
turned on. 

8755 MOSFETs (8000 for training and 755 for testing) 

with various gate lengths (LG ∈ �25��, 290��
 ), 

source/drain junction depths (Xj ∈ �10��, 90��
), spacer 

widths (LSP ∈ �10��, 110��
), gate poly thicknesses (TPOLY 

∈ �50��, 150��
 ), and substrate thicknesses (TSUB ∈

D
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�100��, 200��
) are generated uniformly and randomly 
(Fig. 1) using TCAD Sentaurus [17]. From device physics, it 
is known that LG and Xj are strong parameters affecting ION 

and IOFF.  LSP has a certain strength and sometimes affects IOFF 
if Xj/LG is large.  TPOLY and TSUB are weak and irrelevant 
parameters. The weak parameters are added to show that the 
framework will not be confused by irrelevant independent 
variables. The gate oxide thickness, poly gate doping, and 
substrate doping are 1.4 nm, 1020cm-3, and 1.5×1018cm-3, 

respectively. The transistor width is 1µm. The structures are 
simulated in SDevice with a standard setup including Fermi-
Dirac statistics, density gradient for quantum correction, high 
field saturation, and IALMob [17] to produce saturation IDVG 
curves with VG from 0 V to 1.4 V and VD = 1.4 V. The 
structure image is saved in monochromatic portable network 
graphic (png) format with 80×80 pixels and the IDVG is 
discretized to 51 points. A minimum LG of 25nm is used 
because this corresponds to only 5 pixels in the figure. 

Variational autoencoder-based machines are trained to 
perform the inverse design and forward prediction. Fig. 1 
shows that the machine is composed of two major 
components, namely one image-VAE (top) and one curve-
VAE (bottom). Unlike in a regular autoencoder (AE) [4][9] 
where only the difference between the input and the output 
(reconstruction loss) is minimized, a VAE is trained also by 
regularizing the encoding (data in the latent space) 
distribution. This is done by adding the Kulback-Leibler (KL) 
divergence between the encoding distribution and the 
Gaussian distribution to the loss function [18]. With this, the 
VAE is less susceptible to overfitting. Since this work is 
related to image feature extraction, VAE is chosen to avoid 
spurious image prediction due to overfitting as inspired by the 
work of using VAE to generate handwritten digits [18]. 

 Since the structures are generated by varying 5 

parameters (LG, Xj,  LSP, TPOLY, and TSUB), 5 latent nodes are 
enough to capture the underlying physics [3][9]. However, 
more latent nodes are found to help find the global minimum 

and improve training performance during the VAE training. 
Therefore, the image-VAE has 30 latent variables. In addition 
to KL-loss, binary cross-entropy and mean squared error loss 
is used as the reconstruction loss in the image- and curve-
VAE, respectively. Fig. 1 shows that the trained VAEs can 
reconstruct the testing input image and curves (left) 
accurately at their outputs (right). To connect the image-VAE 

and curve-VAE, their latent variables, ℎ� , are regressed 
against each other in both directions using 3rd-order 
polynomial regressions (orange box in Fig. 1). 

Note that 8000 data are required for accurate training 
because there are 5 parameters. This means that, on average, 
80001/5 ~ 6 variations are required for each parameter to learn 
the underlying physics. If only considering the 3 medium to 

strong parameters (LG, Xj,  and LSP), it is expected that only 
63=216 data are required. This is consistent with the finding 
in manifold learning using AE in [9]. 

III. INVERSE DESIGN 

Inverse design in engineering is generally a very difficult 

problem [16]. In this study, inverse design refers to the 

finding of a MOSFET structure to reproduce a given IDVG. It 

should be noted that the goal of inverse design is not to 

reproduce a certain device structure but to produce a device 

that has a certain IDVG. Very often, the device engineer needs 

to design a transistor to match the IOFF (VG = 0V, VD = 1.4V) 

and ION (VG = 1.4V, VD = 1.4V) requirements by a circuit 

designer. This corresponds to the “red path” in Fig. 1.  

To demonstrate that the framework is capable of 

performing inverse design and to show that the machine has 

learned the underlying physics instead of memorizing the 

training data, “hand-drawn” curves are used. The “hand-

drawn” curves are constructed by adding noise to the IDVG 

curves it has not seen before. To keep the IOFF and ION 

unchanged (as per the specification), noise is not added to the 

terminal points (VG = 0V, 0.028V, 1.372V, 1.4V). Twenty 

noisy curves are tested and Fig. 2 shows 5 random IDVG 

curves from the test set with and without noise. The original 

structures corresponding to these curves are shown in Fig. 3 

(corresponding to LG = 47.0nm, 92.0 nm, 114.0 nm, 135.0 

nm, and 247.0 nm, respectively). The inverse-designed 

structures, which are obtained by feeding the noisy “hand-

drawn” IDVG in Fig. 2 into the red path in Fig. 1, are shown 

at the bottom of each row in Fig. 3.  

It is found that passing the noisy curves through the curve-

VAE 2 times before the red path and passing the final images 

3 times through the image-VAE after the red path improves 

Fig. 1. The machine used in this study which combines an image-VAE, a 
curve-VAE, and 3rd order Polynomial Regressors (PR) (enclosed in the blue 
box). The image- (curve-) VAE is trained with the corresponding images 
(IDVG curves). Only 3 layers are shown for clarity. The PRs are trained to 
correlate the latent variables between the image-VAE and curve-VAE 
(enclosed in the orange box). Purple (red) thick dashed lines indicate the 
forward (inverse) prediction paths. M = 6399 and C = 50. Image-VAE 
structure is shown in the figure without the input, latent, and output layers 
(green box). C and D stands for 2D convolution and dense layers, 
respectively. The curve-VAE has 30/10/5/10/30 nodes in the hidden layers. 
RELU is used for activation except the last layer (sigmoid for image-VAE 
and linear activation for curve-VAE).  One image example and a group of 
100 randomly selected curves are shown as the inputs and outputs of the 
image- and curve-VAE, respectively. 

 

 
Fig. 2. Five selected IDVG curves with and without noise used in the inverse 
design. Left: logarithmic scale. Right: linear scale. 
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the results.  

There are a few observations. 1) The inverse-designed 

structures give a correct trend in effective LG (distance 

between LDD, guided by the blue dotted line) which 

determines the ION (note that the spacer LDD does not 

contribute too much to the ON-state resistance). Since the 

effective LG is not extracted and given to the machine 

manually, the machine has successfully learned the 

underlying physics itself. 2) It is known from device physics 

that TPOLY and TSUB do not affect IDVG. Therefore, the 

machine has learned to just assume a constant TPOLY and TSUB 

for all devices. 3) For LG = 135nm, the actual device has a 

large Xj which is expected to increase the IOFF. However, 

since the substrate contact is put at the bottom and close to 

the S/D, this reduces the short-channel effect substantially. 

As a result, the machine predicts a device with a smaller Xj at 

a larger TSUB. As mentioned earlier, the goal of inverse design 

is not to reproduce the original structure but to generate a 

structure that produces the desired IDVG. Point 3) shows that 

this is successful. 

To confirm that it has produced the desired electrical 

characteristics, the inverse-designed structures are then used 

to perform IDVG simulations with ION and IOFF extracted. They 

are then plotted against the ION and IOFF of the required values. 

The R2 is found to be 0.90 and 0.97, respectively (Fig. 4 and 

Table I), which shows that it can capture the physics well. 

IV. FORWARD PREDICTION 

It is also desirable to predict the IDVG for a given structure 

without using time-consuming TCAD simulations. This can 

be used as a novel approach to augment compact modeling 

when a novel device is still not well-understood. In that case, 

the image can be used as the input parameters to the compact 

model without the need for domain expertise to extract the 

strong parameters (e.g. LG in this case). 

This can be achieved by using the forward prediction path 

(purple path in Fig. 1). To demonstrate that the machine has 

learned the physics, hand-drawn structures are used. The 

hand-drawn structures are obtained by modifying the unseen 

test set structures. Fig. 5 shows all 10 of the test structures 

(top) and the corresponding hand-drawn structures (middle). 

Note that the hand-drawn structures are drawn so that the 5 

parameters are the same as the original structure, but it has a 

different greyscale (e.g. spacer has different intensity and the 

doping gradient information of S/D and the substrate is lost) 

and unsmooth boundaries. 

The corresponding IOFF and ION of all curves are also 

extracted. They are then plotted against the expected IOFF and 

ION.  

It is found that the prediction of both IOFF and ION are good 

with R2 = 0.96 and 0.97, respectively (Fig. 6 and Table I). 

Note that to improve the result, the hand-drawn images are 

passed through the image-VAE one time before the purple 

path. 

V. CONCLUSIONS 

 A novel framework based on VAE is demonstrated to 

have effectively learned the underlying physics by mapping 

 

 
 

Fig. 3. Twenty structures are shown with varying Lg. The top of each row has the structures giving the exact IDVG curves without noise. The bottom of each 
row has the inverse designed structures corresponding to the IDVG curves with noise. 
 

 
Fig. 4. IOFF and ION prediction accuracies (R2) for the inverse design. 

TABLE I 
ION AND IOFF PREDICTION ACCURACIES (R2) 

Machine INVERSE DESIGN FORWARD PREDICTION 

Parameters ION IOFF ION IOFF 

R2 0.90 0.97 0.97 0.96 
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the device image to IDVG curves. It shows good results in 

performing inverse design and forward prediction even with 

noisy curves and hand-drawn images. This can be used to 

learn the physics of novel devices when pictures are 

available. Particularly, the forward prediction can be used to 

augment the traditional compact modeling by using the image 

of a device as the input parameters without the need for 

domain expertise to extract the strong parameters. This will 

be very useful for novel devices which are not well-

understood yet. 
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Fig. 5. Ten of the structures used to test the forward prediction process. Top: TCAD generated structures. Middle: The corresponding hand modified structures. 
Bottom: TCAD simulated IDVG based on TCAD generated structure (dotted blue) and IDVG from hand drawn structure by forward design (red line). LG unit 
is in nm. 

 
Fig. 6. IOFF and ION prediction accuracies (R2) for the forward design. 
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