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Abstract—The analysis of statistical variation in circuits or
devices, resulting from process, voltage, and temperature (PVT)
variations, is a critical aspect of ensuring high yield and accurate
high-sigma analysis in semiconductor fabrication. As the indus-
try progresses toward nanometer technologies, process variation
becomes a significant challenge, necessitating the development of
effective statistical models. Traditional Monte Carlo simulations,
however, struggle to scale with the increasing number of process
variables, leading to an exponential growth in the required
simulations. In response to this challenge, we introduce FlowSim,
a novel approach that employs density estimation to accurately
perform yield and high-sigma analysis with a significantly reduced
number of simulations. This approach offers a unique solution
to the scalability issues faced by conventional Monte Carlo
simulations, providing over a 100x decrease in the number of
required simulations while maintaining a prediction error below
5% across all statistical metrics of circuit performance.

Index Terms—Statistical variation, Monte Carlo simulation,
High-sigma analysis, Artificial neural network

I. INTRODUCTION

In recent years, the manufacturing of semiconductors has
become increasingly complex due to the ongoing downscaling,
leading to smaller feature sizes and tighter process tolerances.
This complexity has given rise to process variations, which
have emerged as a significant concern due to their potential
to cause deviations in circuit performance and yield. This issue
is particularly pronounced in advanced technologies where the
number of process variables increases. Traditional Monte Carlo
simulations have encountered scalability challenges because of
these factors.

To address these challenges, we propose FlowSim, to our
knowledge, the first approach that utilizes density estimation
to achieve accurate yield and high-sigma analysis with a sig-
nificantly reduced number of simulations. Although surrogate
model-based approaches using simple neural networks [4] exist,
FlowSim offers distinct advantages in terms of interpretability
and managing high-dimensional data. Specifically, FlowSim
avoids the need to train complex relationships between input
and output pairs of SPICE simulations, which would require
large amounts of data as the number of input process variables
increases.

The effectiveness of the FlowSim method is demonstrated
through its application to ring oscillators (RO) of various
stages. The approach achieves notably low error rates: 0.9%
and 0.8% for 3 and 4 sigma values of Figures of Merit (FoMs)
respectively. Moreover, it estimates the yield of an RO with
error rates of 0.2% and 0.5% across different specifications.
These experimental results suggest that this machine learning-
based technique can potentially overcome the computational
challenges associated with traditional Monte Carlo simulations,
thereby enabling more precise and efficient statistical analysis
of circuit performance under PVT variations.

*Equal contribution. Email: chanwoo.park, hongchul.nam@alsemy.com

II. RELATED WORK

A. Efficiency Improvement in Simulation

Significant research has been conducted to enhance the
efficiency and precision of simulations and statistical analyses in
the context of process variability. A study presents a simulation
framework for evaluating the impact of location-dependent
variability in photonic integrated circuits through Monte Carlo
simulations, emphasizing the importance of variability modeling
at the circuit level for efficient design [3]. Another research
proposes an automated framework for Variability Analysis of
CMOS circuits using a simulated annealing algorithm, high-
lighting the increasing impact of process manufacturing and
design mismatches on circuit performance [5]. Other works
introduce a yield optimization method based on Bayesian opti-
mization [14], a scaled-sigma sampling method for estimating
rare failure rates [13], and a new sampling scheme that com-
bines the benefits of Latin Hypercube and Low Discrepancy
sampling methods [9].

B. Variability Analysis

Research has also focused on applying various methods
to specific technologies, providing valuable insights into their
performance under process variations. One paper investigates
the impact of Negative Capacitance FinFET technology on
processor performance under process variations, revealing that
process variations have a larger impact on the processor’s
performance when it operates at a lower voltage [1]. Another
study presents two approaches that enable Monte Carlo anal-
ysis of photonic integrated circuits, including the treatment of
spatial correlations [11]. A different paper proposes a hybrid
Importance Sampling Importance Splitting methodology for
rare fail event estimation of high-dimensional memory designs,
demonstrating a 3-5X reduction in runtime compared to tra-
ditional Importance Splitting approaches [12]. Lastly, a study
proposes a low-cost and accurate yield estimation procedure for
compact microwave couplers, demonstrating the effectiveness of
variable-fidelity electromagnetic (EM) simulation models and
fast surrogates [8].

C. Generative AI in Electronic Design Automation

Generative AI has shown promise in various aspects of
electronic design automation (EDA). One study introduces a
generative adversarial network (GAN)-guided well generation
framework for analog/mixed-signal circuit layout, which mim-
ics the behavior of experienced designers and improves layout
compactness and robustness [15]. Another paper proposes a
deep learning strategy combining wavelet transform and GANs
for analog-circuit fault diagnosis, addressing limitations of
traditional methods and limited training samples [6]. A different
study evaluates the effectiveness of generative self-supervised
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learning for combinational gate sizing in VLSI designs, achiev-
ing high accuracy and significantly faster design convergence
[10]. A paper proposes an end-to-end lithography modeling
framework based on a GAN, which significantly speeds up the
lithography simulation process compared to conventional meth-
ods [16]. Lastly, a fully automated analog routing paradigm that
leverages machine learning for routing guidance is introduced,
achieving significant improvements over existing techniques
and competitive performance to manual layouts [17].

While AI tools have been extensively applied to enhance
efficiency across various aspects of the electronic design pro-
cess, few studies have explored direct modeling of circuit per-
formance through density estimation. In particular, the typical
regression models, which directly map process variables to fig-
ures of merit, often struggle with efficiency and accuracy when
dealing with complex high-dimensional dependencies and non-
linear relationships. Additionally, while generative models have
been used in different contexts, their application as a method
for studying the statistical distributions of circuit behaviors due
to process variability has not been thoroughly investigated.

III. GENERATIVE MODEL FOR DENSITY ESTIMATION

FlowSim is a generative model based on Normalizing Flows
(NF) [7], designed to estimate the target density of circuit
figures of merit (FoM) such as power and delay, influenced
by process variations. One of the main advantages of NFs
over other generative models, such as generative adversarial
networks (GANs) and variational autoencoders (VAEs), is their
ability to provide explicit density estimation. This capability
is facilitated by a series of invertible transformations, which
map data from a simple prior distribution, such as a Gaussian
distribution, to the complex target distribution. The result is
an immediate and insightful understanding of the data density,
which can be beneficial in guiding design decisions and opti-
mization strategies.

As shown in Figure 1, FlowSim starts by training on a set of
SPICE simulation results, with quantities ranging from 100 to
1,000,000. The training process aims to minimize the Kullback-
Leibler (KL) divergence between the learned distribution and
the target distribution, ensuring the model accurately captures
circuit variability as reflected in the FoM distribution and
dispersion.

After training, FlowSim is able to rapidly generate a large
number of synthetic samples that closely resemble the SPICE
simulation results. This generation process only requires the
inference time of the neural network, which is significantly less
computationally demanding compared to SPICE simulations,
thus enabling efficient statistical analyses of the circuit. The
detailed methodology of FlowSim is outlined in Algorithm 1.

Algorithm 1 Estimating statistics of a circuit using FlowSim

Require: Circuit (e.g., 51-stage RO), SPICE simulator, qθ(x),
where x denotes FoMs of the circuit;

1: Simulate the circuit with SPICE and generate k samples,
{xi}ki=1;

2: Train qθ(x) to approximate true density p(x) by minimizing
the KL divergence L(θ) =

∑k
i=1 log

(
qθ(xi)
p(xi)

)
;

3: Generate n samples (n ≫ k) with qθ(x), {x̃i}ni=1;
4: Compute estimated statistics (e.g., µ, σ, yield) using syn-

thetic data {x̃i}ni=1;

IV. EXPERIMENTS AND RESULTS

We conducted experiments on 5, 51, and 101-stage Ring
Oscillators (ROs) to demonstrate efficient density estimation

Fig. 1: The FlowSim framework.

with a limited number of SPICE simulation results. The primary
objective was to approximate the target distribution, represented
by an extensive set of Monte Carlo simulations. To evaluate
the effectiveness of FlowSim, we compared its performance
with two baseline methods: Multivariate Normal (MVN) and
Gaussian Kernel Density Estimation (KDE). The MVN baseline
was implemented by fitting a multivariate Gaussian distribution
to the data, estimating the mean vector and covariance matrix
from the provided samples. In the case of KDE, we performed
non-parametric density estimation using a Gaussian kernel.

Simulations were performed on ROs designed with a standard
CMOS process. We employed the BSIM4 model with various
process variables such as tox, Vth0, vsat, µ0, and Nfactor to
simulate changes in RO behavior due to process variations, as
detailed in Table II. A dataset of 106 power and delay simulation
results with varying VDD was generated. The methods were
trained on different numbers of simulations (from 100 to
10,000), and performance was evaluated based on the accuracy
of calculated statistics such as mean (µ), standard deviation (σ),
sigma values, and yield estimation.

FlowSim was designed with 16 layers, each containing a
permutation and a coupling sub-layer. We used a batch size
of 64 and a learning rate of 1e-4, which was adjusted based
on performance. The loss function was defined as the KL
divergence between the flow network and the training data
distribution. The training data were split into both training
and validation sets. Training epochs were set to be sufficient,
and early stopping was implemented to prevent overfitting
when the validation loss stopped decreasing. To further prevent
overfitting, we included an L2-norm regularization via a weight
decay term in the loss function, ensuring the weights in the
network did not explode during training.

Fig 3 demonstrates the evolution of 1000 randomly generated
samples from a Gaussian distribution as they pass through each
layer of the FlowSim model. This model was trained on a
51-stage RO at VDD = 0.9V . As the random samples pass
through the deeper layers of the network, they gradually begin
to resemble the true distribution of the data.

V. PERFORMANCE COMPARISON

Figure 4 demonstrates that the kernel density estimation
(KDE) and multivariate normal (MVN) methods exhibit a
pronounced bias in the probability distribution, leading to an ap-
proximation of the target distribution that resembles a Gaussian-
like shape. This characteristic presents challenges for these
techniques when dealing with complex target distributions. In
contrast, FlowSim, due to the significant expressive power of
invertible neural networks, can effectively learn arbitrary target
densities.
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(a) True Density (b) Kernel Density Estimation (c) Multivariate Normal (d) FlowSim (Ours)

Fig. 2: Density estimation results for FoMs (power and delay) of a 5-stage RO with VDD = 0.7V .

TABLE I: Comparison of methods approximating MC simulations for a 101-stage RO: Estimated statistics and their error
rates relative to reference values. Each method learns from only 100 samples, with our approach showing rapid and accurate
convergence to the reference distribution.

Method
Delay (ns) Power (mW)

µ σ 95.5% 99.7% 99.9% µ σ 95.5% 99.7% 99.9%

Reference 2.04 0.19 2.47 2.70 2.87 0.67 0.08 0.85 0.93 0.99
MVN 2.05(0.3%) 0.20(9.5%) 2.54(3.0%) 2.69(0.3%) 2.70(5.8%) 0.66(0.3%) 0.08(5.0%) 0.85(0.7%) 0.89(4.3%) 0.89(10.1%)
KDE 2.05(0.3%) 0.23(20.9%) 2.59(5.0%) 2.82(4.3%) 2.95(2.8%) 0.66(0.4%) 0.09(15.8%) 0.87(2.7%) 0.95(1.8%) 1.00(0.9%)

FlowSim 2.05(0.3%) 0.18(4.6%) 2.45(0.9%) 2.68(0.8%) 2.86(0.2%) 0.66(0.3%) 0.08(2.0%) 0.85(0.5%) 0.92(0.9%) 0.98(0.8%)
95.5%, 99.7%, and 99.9% values denote right tail quantiles at 2, 3, and 4 sigma levels, computed from 100,000 generated actual samples.

Fig. 3: Transformation of 1000 Random Samples through FlowSim Layers. The figure illustrates how the initial random
distribution evolves towards the target distribution across the layers of the FlowSim model trained on a 51-stage RO at VDD =
0.9V .

TABLE II: Process variable ranges for NMOS and PMOS.

Process Variable Symbol Unit NMOS Range PMOS Range

Oxide Thickness tox nm 1.53–2.07 1.46–1.98
Threshold Voltage Vth0 V 0.529–0.716 −0.675–−0.499
Velocity Saturation vsat m/s 110,500–149,500 76,500–103,500

Mobility µ0 m2/Vs 0.0417–0.0564 0.0179–0.0242
Subthreshold Swing Nfactor – 1.36–1.84 1.53–2.07

As presented in Table I, the issues related to Gaussian-
like approximation become evident. The conventional concept
of 2, 3, and 4 sigma values can diverge substantially from
the actual quantiles. For instance, the right tail quantiles of
the 4 sigma value for power underestimate the true 99.9%
quantile value by 10.1%, a discrepancy that could lead to
issues during circuit verification. These findings underscore
the importance of utilizing advanced statistical methods like
FlowSim to accurately learn target distributions, allowing for
a deeper understanding of the distribution. Such insights can
guide more informed decision-making in circuit design and
verification.

Table III illustrates the yield estimation performance for three
distinct sets of required power and delay specifications of the
5-stage RO with VDD at 1.1V. Across all conditions, FlowSim
consistently outperforms the other baselines. The error rates of

FlowSim, compared to the true baseline, range from as low as
0.2% to as high as 2.8%, demonstrating remarkable accuracy.

It is worth noting that all our experimental findings suggest
the limitations of relying solely on summary statistics, such as
mean and variance, a notion well-established in the literature.
The classic example of Anscombe’s quartet [2] effectively
illustrates how datasets with identical summary statistics can
have vastly different underlying distributions. These examples
highlight the necessity of employing advanced statistical tech-
niques, such as FlowSim, to attain a comprehensive understand-
ing of the data and make informed decisions based on this
understanding.

TABLE III: Yield estimation accuracy comparison.

Method D ≤ 0.19ns
P ≤ 0.26mW

D ≤ 0.20ns
P ≤ 0.28mW

D ≤ 0.21ns
P ≤ 0.29mW

Reference 70.0 80.0 90.0
MVN 67.1(4.1%) 78.6(1.8%) 89.1(1.0%)
KDE 66.7(4.7%) 77.5(3.1%) 87.5(2.8%)

FlowSim 68.0(2.8%) 79.8(0.2%) 89.5(0.5%)
D and P denote delay and power, respectively.
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(a) Epoch 10 (b) Epoch 20 (c) Epoch 30 (d) Epoch 40

Fig. 4: Output Distribution Progression Over Training Epochs. Using the FlowSim model trained on a 51-stage RO at
VDD = 0.9V , the figure illustrates how the model’s output distribution aligns with the target distribution as training progresses.

VI. CONCLUSION

This paper presents FlowSim, an invertible neural network
designed to learn the statistics of Figure of Merit (FoM) for
a circuit using significantly less data than traditional Monte
Carlo simulations. This paper is the first to use direct density
estimation of circuit FoMs for statistical analysis. The experi-
ments conducted show that FlowSim is capable of accurately
estimating target distributions and performing yield and high
sigma estimation with over a 100x reduction in the number
of simulations. The results are promising and suggest that
FlowSim can significantly reduce simulation time and circuit
optimization cycles, potentially impacting the field of statistical
analysis of process variations.
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