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Abstract—We present a full quantum calculation of the
electron-hole generation/recombination rate caused by
atomic-scale defects, which are known to be at the origin
of the noise in semiconductors. While numerous attempts
have been made to model this non-radiative multiphonon
processes (MPE) using analytical approximations, only a
few have reported numerical solutions that consider both
the electronic and ionic overlaps. In this study, we tackle
this issue within the framework of a complete ab initio
calculation, which involves computing the dynamical matrix
in large supercells. To address the challenge of calculation
the ionic integral, we propose a semi-classical method.

Index Terms—Dark current, electronic cross section, multi-
phonon processes, deep center, semiconductors, ionic wave
functions

I. ORIGIN OF THE PROBLEM

Electronic devices are degraded when they are used
in aggressive radiating environments such as nuclear,
spatial, medical, or during the implantation processes.
The incoming particles destroy the crystalline structure
of the semi-conductor by crossing it, leaving in its wake
some atomic scale defects. These defects induce new
electronic states in the semi-conductor band gap, which
can act as bridges for the electrons to thermally cross the
gap, or as traps for free carriers. The so created current
generates a noise known as the Shockley Read Hall
(SRH[1], [2], [3]) generation rate, which is detrimental
to the device performance[4], [5].

To comprehensively model and understand the impact of
defects on electronic devices, many physical processes
must be taken into account, each of them requiring its
own space and time scale to be representative of the
phenomenon. These processes include: (i) the density
functional theory (DFT[6], [7]) to describe the electronic
structure, (ii) the GW approximation[8], [9] to solve the
band gap problem and determine ionization potential and
electronic affinities of the defect (electronic trap energy
Et ), (iii) the MPE theory [10] for evaluating the electrons
and holes capture cross sections (σn and σp), and finally
(iv) the well-established SRH theory and the detailed

balance to calculate the generation rate RSRH induced
by each defect as a function of the device properties:

RSRH =
vthσnσp(n2

i −np)

σn[n+niexp(Et−EF
kBT )]+σp[p+niexp(Et−EF

kBT )]

Concerning SRH, while most of the parameters are
generally known, (Fermi energy EF , electronic thermal
velocity vth, concentration of free carriers p and n, ni
the intrinsic carrier density and Et trap defect energy),
there is a clear lake of knowledge regarding the electronic
cross sections σ , which are the theoretical bottleneck of
the modeling. The following explains how to calculate
them numerically within a full quantum perspective.

II. Ab initio CALCULATION OF THE ELECTRONIC
CAPTURE CROSS SECTIONS

The evolution of the system is governed by the Hamilto-
nian Ĥ as Ĥ Ψn(r,R) = Etot

n Ψn(r,R) where the wave
functions |Ψn⟩ depends on the electronic r and ionic R
positions. The generation rate Γi→ f from an initial non
excited state |Ψi(r,R)⟩ to a final excited state |Ψ f (r,R)⟩
is governed by the Fermi golden rule:

Γi→ f =
2π

h̄
| ⟨Ψ f (r,R)|∆H |Ψi(r,R)⟩ |2(Etot

i −Etot
f )

This scalar product is an overlap integral between the
modified initial wave function and the final wave func-
tion. This scalar product is by definition null when the
system is not perturbed (∆H =0) and becomes not null
for a perturbed system. In the case of the SRH, the
electronic excitation is thermally activated, meaning that
this perturbation comes from the vibrations modes of the
defect, and the fact that the equilibrium positions of the
final state differs from the one of the initial state: Rf ̸=Ri.
This has induced the name of multiphonon assisted
emission (MPE)[10]. The corresponding electronic cross
sections are generally small (C≈10−17 cm−2) if the
needed perturbation (atomic displacement) is large[11],
and high otherwise (C≈10−13 cm−2) as less phonons
are needed for this later type of transition. This large
versus small cross section is typically determined by
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the size (spacial extension) of the defect, an example
of calculation is shown in Ref.[12].

To solve the Fermi golden rule, the first step is the
Born-Oppenheimer approximation which expresses the
fact that the electrons instantaneously follow the ionic
positions. The global wave function can be written as a
product of an electronic and an ionic one, Ψn(r,R) =
φn(r,R)χn(R), which permits to split the initial Hamil-
tonian into an electronic one at fixed atomic coordinates
and a ionic one:

Ĥ elec
R φn(r,R) = EBO

n (R)φn(r,R) (1)

Ĥ ion
χs(R) = Esχs(R) (2)

where the electronic one is solved within DFT frame-
work, whereas, the ionic one is only solved semi-
classically within density functional perturbation theory
(DFPT[13]), giving the 3Nat vibrational modes Ω of the
system. MPE is then the transition from a delocalized
electronic Bloch wave function of the bulk (Fig. 1a) to
an electronic wave function localized near the defect
(Fig. 1b). It is followed by the variation of the defect
charge state and of the atomic positions.

(a) |φi|2 valence:
delocalized electronic wave

function

(b) |φ f |2 defect:
localized electronic wave function

Figure 1: Initial and final states for the electronic wave
functions (yellow).

In the diabatic-static model and first order Taylor-
expansion, the Fermi golden rule can be rewritten, as:

Γim→ f n =
2π

h̄
|

Nmodes

∑
k

⟨φi|
∂H
∂Qk

|φ f ⟩︸ ︷︷ ︸
electrons

⟨χim|∆Qk|χ f n⟩︸ ︷︷ ︸
ions

|2

×
(

EBO
i −EBO

f +(
1
2
+m)h̄Ωi − (

1
2
+n)h̄Ω f

)
(3)

where Qk are known as the generalized coordinates
associated to the vibrational mode k, and m (n) the
vibrational state of the initial (final) modes presented
in Fig. 3. The electronic overlap can then be calculated
within DFT in the one dimension approximation[14] as
shown in Fig.2, whereas the ionic overlap is generally
treated analytically[15], [16].

We also note incidentally that using the Fermi golden
rule in this case is an approximation because its validity
is limited to the transitions between quantum states of
the same Hamiltonian, whereas the wave functions used
in Equ. 3 have been calculated using Equ. 1 with two
different Hamiltonians: the first is expressed at the initial
atomic positions and the second at the final ones.
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Figure 2: Numerical calculation of the electronic overlap
using ⟨φi| ∂H

∂Q |φ f ⟩=
∂ ⟨φi|φ f ⟩

∂Q (EBO
f −EBO

i ). Only the 5 first
valence bands and the defects state are shown.

III. CONSTRUCTION OF THE IONIC WAVE FUNCTION
AND ITS OVERLAP INTEGRAL

To construct the ionic wave function of a defective
supercell and evaluate the ionic part of the scalar product,
the first step is to calculate the dynamical matrix in
the ground and excited states. As each eigenvector ei
of the dynamical matrix is a 1D direction into a 3NatD
space, the idea to obtain the corresponding ionic wave
functions (needed for ionic overlap calculation) is to ex-
pand the total atomic displacement along the independent
eigenvectors. The ionic Hamiltonian H ions can then be
splitted into separated Hamiltonians in each eigenvector
dimension:

H ions = H1 ⊗H2 ⊗·· ·⊗H3Nat (4)

This permits to give for each mode i the analytic solution
of the 1D harmonic oscillator known as the Hermit
polynomials Hi(x) represented in one dimension Fig. 3.
In this 1D solution, the order of the Hermit polynomial of
each mode is the Bose-Einstein phonon population of the
eigenmode. The indice m (n) that describes the vibronic
state of the initial (final) ionic state Equ. 3 then contains
the vibronic state of all the 1D oscillators. This assump-
tion is relevant only for small atomic displacements that
typically preserve correct the harmonic approximation.

The 3Nat ionic wave function can then be written as the
product of each 1D wave function Hi:

χ(R) =
3Nat

∏
i=1

Hi(xi) (5)
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Figure 3: One dimension model of harmonic oscillators
in the initial and final states. The blue clouds repre-
sents the Hermit polynomials, exact analytic solutions
of the 1D oscillator. the general coordinate separating
the two equilibrium positions is ∆Q. The order of the
polynomial is determined by the temperature as the Bose-
Einstein phonon population. The ω2 are the eigenvalues
of the dynamical matrix, second order derivative of
the parabola. IP and EA are respectively the ionization
potential and electronic affinity as calculated within the
GW approximation.

and permits to recover the known snapshots of Figs. 5b
and 5c. The xi are the coordinates of R into the eigenvec-
tor basis: R = ∑

3Nat
i xiei where the equilibrium positions

are the origin of the 3NatD space.

However, the ionic wave function χ(R) is a 3Nat dimen-
sions function that requires a huge amount of memory to
be stored. Ideally, it should be stored into a tabular con-
taining N3Nat

s terms where Ns represents the number of
elements used to sample each dimension. When Ns ∼250,
which is the minimum needed for a correct sample
of a defective supercell containing at least 100 atoms,
this storage is clearly out of the present computational
possibilities.

To solve this problem, it is possible to make the further
assumption that each atom has its own wave function
which do not overlap with the ones of the other atoms.
Once again, this assumption is still valid in the limit of
small temperatures, as the displacement of the atoms is
restricted around their equilibrium position.

In the 3D space, the 1-atom wave function of the j-th

3D space
of atom j

3D space
of atom j + 1

E

e
jiH

ji (λ)

eig
en

ve
cto

r ei

Hi
(xi

)

Figure 4: Schematic representation of the 1D solution
in the 3NatD space projected into the 3D space of each
atom. The red arrow anoted "eigenvector" represents a
1D vector into the 3NatD space, the blues lines on it
are the highest values of the Hermit polynomial, and the
green dot the equilibrium position. These are projected
into the 3D space of each atom (the two axis). The black
parabola represents the variation of the energy along the
displacement induced by the eigenvector, for which the
second order derivative (frequencies squared as eigenval-
ues of the dynamical matrix) gives the degree of Hermit
polynomial (phonon population) and its amplitude.

atom χ j(R) is then constructed iterativelly as:

χ
j

0(R) =

{
1 if R = Rat j

O if R ̸= Rat j
(6)

χ
j

i+1(R) =
∫

χi(R−λeji)H ji(λ )dλ (7)

χ
j(R) = χ

j
3Nat

(R) (8)

Computationally, the wave function is initialized by
sampling the 3D supercell space into Nx×Ny×Nz meshes
with value 0 everywhere except on the j-th atomic
position (Equ. 6). This starting wave function is then
extended along the first eigenvector e1 projected on the
3D subspace of the j-th atom ej1 (red arrow Fig. 5a) and
multiply by H j1 (Equ. 7). H j1 is the Hermit polynomial
solution of the first 1D oscillator H1 (used in equ. 5) but
projected on ej1, as represented in Fig. 4. This step is
recursivelly done for each of the 3Nat eigenvectors. The
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Figure 5: Iterative construction of a 1-atom ionic wave
function including the 3Nat eigenmodes contributions.
For clarity, only 6 modes have been taken into account :
the ones for which the displacement of this atom is the
highest. Blue cloud: wave function isovalue. Red arrows:
displacement of the atom along each eigenmode. n: Bose-
Einstein population.

resulting construction of the 1-atom ionic wave function
is presented in Fig. 5.

This method scales in Nx×Ny×Nz×Nλ×3Nat . where Nλ

is the sampling of the integral in Equ. 7. To reduce the
difficulty of this task, the recursion can be limited to
the most relevant eigenvectors of larger displacement.
This reduce the 3Nat to roughly a dozen of phonons.
In addition, the sampling of the 3D space and the
boundaries of the integral can be both restricted around
the studied atom, instead of covering all the supercell.
To represent χ pro j, the 3NatD wave function projected
into a 3D space, a simple sum of each atomic projection
χ j can be done, as their non zero value are restricted
around the atomic equilibrium position, i.e. they do not
overlap:

χ
pro j(R) =

Nat

∑
j=1

χ
j(R) (9)

Note that this method completely loses the information

concerning the motion of the atoms relatively to each
others. Hopefully, this information it is not needed for
the evaluation of the ionic overlap integral. Its validity
is also restricted to the wave functions calculated at
the Brillouin zone center only, which is the case for
defects in supercells. Based on this approach, a rigorous
calculation of the overlap is numerically possible by
summing the contribution of the scalar product of each
atomically projected wave function:

⟨χim|∆Qk|χ f n⟩ ∼
Nat

∑
j=1

⟨χ j
i |Qjk|χ j

f ⟩ (10)
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