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Abstract—As technology continues to advance, the semiconductor 

industry is constantly on the lookout for new materials that are both 

high-performing and cost-effective. One promising avenue for 

achieving further gains is through the use of amorphous materials 

with desirable properties that can be incorporated in semiconductor 

processing steps. To optimize these materials, advanced and 

efficient material simulation techniques are needed to address the 

complex nature of bonding and structural effects, predict, and 

analyze their properties, and provide suitable engineering solutions. 

This paper highlights a novel approach for studying the behavior of 

low-k amorphous materials under repetitive structural pulses that 

can be applied in any future amorphous material study. By 

efficiently capturing important experimental data, such as atomic 

density ranges, compositions, porosities, and dielectric constants, 

the method provides valuable insights that cannot be obtained 

through experimentation alone. Additionally, the paper includes a 

discussion on segregation trends and addresses effects of impurities 
as possible knobs for further optimization and material engineering. 

I. INTRODUCTION 

Amorphous materials play a vital role in semiconductor 

industry due to their distinctive electronic, optical, and 

mechanical properties. With the increasing demand for high-

performance, cost-effective materials compatible with 

miniaturization processes, the importance of amorphous 

materials has further amplified over the past decade. Among 

the most promising applications, low-k dielectric material 

development [1-3] is crucial for continued scaling of 

electronic devices as reduces parasitic capacitance between 

conducting wires, leads to optimized power consumption and 

improves overall performance. Despite significant previous 

efforts, the development of new amorphous materials still 

faces substantial challenges due to complexities in 

optimizing growth processes and treatment conditions at high 

temperatures, pressures, and operations at high electric fields. 

To overcome these challenges and obtain effective solutions, 

atomic-level insight is required by advanced quantum 

mechanics based atomistic modeling techniques [4] to 

provide accurate descriptions of material structures and 

dynamics, enable identification of atomic scale mechanisms 

that govern film formation, which are perspectives difficult 

or impossible to attain from experiments alone.  

To accurately model amorphous thin films, however, 

atomistic simulations must account for coexistence profiles 

of metastable local regions on the potential energy surface 

(PES) and provide thermodynamic stability assessments, 

besides bonding patterns and defect formation predictions. 

Additionally, interfacial interactions, substrate-induced 

strains, and chemical environment alterations during 

deposition and annealing must be considered. To facilitate 

new amorphous material engineering, the introduction of 

novel approaches is thus necessary to map density 

dependencies and material evolutions over large energy and 

density landscapes. 

Molecular dynamics (MD) simulations, traditionally 

used for exploring PES by simulated annealing, face 

challenges in capturing long-lived metastable states [5] due 

to limited accessible timescales in typical nanosecond ranges. 

The nudged elastic band (NEB) technique [6], an alternative 

approach, requires prior knowledge of local minima positions 

and extensive computations that needs to be validated [7]. 

Elaborated methods to explore high-dimensional random 

PES, such as stochastic surface walking [8], anharmonic 

downward distortions [9], meta/hyper-dynamics [10], 

umbrella sampling [11], have limitations in capturing rare 

events and exploring large conformational spaces due to their 

reliance on prior knowledge of bias and predefined 

cumulative or collective variables to guide the simulation 

 
 

Fig. 1. Pulse-like perturbations by DFT+KMC, ab initio and classical 

MD on randomly placed precursor fragments produce similar quality 
amorphous structures by average radial distribution function analysis. 
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towards specific regions of the PES. Recent developments in 

machine learning (ML) [12-15], swarm-based optimization 

[16], and genetic algorithms [17] hold promise for quick 

identification of metastable energy minima and transition 

states on PES, however optimization of these methods for 

amorphous systems requires generation of diverse and 

extensive training datasets to account for the absence of long-

range order and the formation of diverse atomic network 

bonding characteristics. 

 

II. OVERVIEW OF METHODS  

To tackle the challenges above, a generally applicable, 

efficient unbiased method is introduced that can provide a 

comprehensive mapping of PES and the method is showcased 

for aBN low-k material engineering. The model involves 

pulse-like one-shot repeated structural perturbations of an 

amorphous structure by a kinetic Monte Carlo (KMC) step. 

QATK [18] and VASP packages [19-20] were used for the 

DFT+KMC and k value calculations, and PES mapping was 

benchmarked against MD, ab initio (abMD) and classical 

(cMD) using a Tersoff force field [21-22]. Within 

DFT+KMC the repetitive perturbation pulses are applied to 

partially converged systems to prevent local minima trapping 

(Fig. 1), then intermediate low energy structures with varying 

densities are extracted and fully optimized to assess 

metastability. The electronic contributions to k values 

calculated using high-precision HSE [23] and RPA [24] 

approximations are compared to high frequency experiments. 

DFT+KMC shows a 1.5x improvement in computation time 

compared to cMD due to efficient and continuous energy-

density mapping. In near future, to further speed up 

amorphous landscape mapping, it is envisioned the use of this 

technique with powerful graph neural ML interatomic 

potentials that exhibit DFT accuracy. 

 

III. RESULTS AND DISCUSSIONS 

a. aBN structure derivation and benchmarking 

Using B3N3 and B1N1 randomly placed fragments derived 

from B3N3H6 and BNH6 precursors commonly used in aBN 

growing experiments, the energy-density space exploration 

with two initial densities (1.2 g/cm3 and 2 g/cm3) yielded 

multiple metastable structures with low formation energies 

(Eform) at densities ~ 2.2 g/cm3, close to experimental values 

[8-9], demonstrating the robustness of DFT+KMC method. 

Structure evolution showed quick rough equilibration within 

20 iterations for 5 samples, for both density and Eform as 

shown in Fig. 2b), allowing efficient statistics derivation 

 
 

Fig. 2. a) Density and Eform evolution along DFT+KMC iterations for B3N3 and B1N1 fragments. b). Eform vs density correlation for 1000 aBN structures obtained 

with variable initial densities and fragment distributions by DFT+KMC. c) Enhanced structural stability is achieved by DFT+KMC over abMD, cMD methods. 
 

 
 

Fig. 3. k value, CN(3)/CN(4) coordination and B-B/N-N bond ratio vs 

density analysis with HSE and HSE + RPA methods. 
 

 
 

 

Fig. 4. Validation with experiments: k values by DFT+KMC reach the 

exp. max value. Lower k-values were obtained for ring-shaped (R: 
B6N6) precursor fragments over dimers (D: B1N1), in agreement with 

experimental trend. 
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from the remaining structures. Method validation regarding 

stability, i.e., low Eform of metastable structures, indicate that 

abMD and cMD show larger energy dispersions over 

DFT+KMC, Fig. 2c) and therefore are less efficient in 

mapping the PES. The averaged radial distribution g(r) 

functions demonstrate good amorphous film quality (Fig. 1), 

with first peaks at rabMD = 1.53 Å, and rcMD ≅ rDFT+KMC = 1.48 

Å, in agreement with previously reported values [1, 25].     

 

b. aBN density correlation to k value 

In the quest to establish k value and bonding characteristics 

trends, aBN structures analysis yields a direct correlation 

between k value and density, which is supported by: i) limited 

void space; ii) bond type changes from sp2 to sp3, 

characterized by atomic coordination trends of CN(3) and 

CN(4), as depicted in Fig. 3. The unusual upturn in k value 

with density observed in cMD is attributed to increased 

number of homonuclear bonds formation and B-B/N-N 

clustering/segregation. 

 

c. Theoretical aBN k value vs experimental results 

The theoretical k value distributions calculated with accurate 

HSE and RPA approximations for aBN structures, Fig. 4, are 

shown to reach the experimental processing window. 

Moreover, k value dependence on initial precursor fragment 

type matches the experimental trend [1], i.e. aBN built from 

BN dimers tend to consistently have higher k values over 

rings.     

 

d. Amorphous bandgap and trap effects on k value  

k values are known to inversely correlate with the bandgap, 

however the additional tail states in amorphous materials, 

segregation issues and partially bonded atoms in porous 

region further complicate the picture. Getting access to 

multiple metastable coexisting configurations in an 

amorphous matrix by employing the DFT+KMC method, on 

the fly statistical analysis becomes possible for all the above-

mentioned effects. From Fig 5a), systems with either deep or 

shallow trap levels tend to induce higher k values at similar 

densities as defect-free cases as shown in Fig 5c). The 

formation of B-B and N-N homonuclear bonds are identified 

to be responsible for these effects, Fig. 5d),e), i.e. deep and 

shallow traps originate from dangling bonds of atoms located 

near porous regions  as shown in the atomic configurations 

depicted in Fig. 15f).      

 

e. Hydrogen impurity effects on aBN structure evolution 

With the vast transferability of DFT+KMC, additional 

impurities can be straightforwardly added to study their 

effects on aBN formation density and evolution. Starting 

from 3 different initial densities of 10% H containing random 

fragment configurations, general density lowering trends 

relative to pristine aBN are observed, 1.9 g/cm3 vs 2.2 g/cm3, 

Fig. 6a). The structures with lowest/highest Eform are shown 

in Fig. 6b), and the corresponding charge distribution 

differences indicate that H incorporation mechanism into 

aBN consists of: i) preference for porous regions; ii) binding 

to partially bonded B; iii) effective pore sizes reduction from 

~4.3 Å to ~3 Å (Fig. 7a),b)). Average porosities of aBN with 

and without H are found to be in a similar range (Fig. 8a)), 

even though the hydrogenated samples exhibit lower 

densities and smaller individual pore sizes. Given the average 

porosity correlation to k value established for aBN (Fig. 8b)) 

it is predicted that H:aBN samples will possibly attain similar 

k values. This projection was verified for a few H:aBN cases 

 
 
 

Fig. 5. a) Density of states (DOS) of structures exhibiting distinctive 

deep and shallow trap states at similar density. b) k value is found to be 
strongly affected by the nature of traps and their energies. c) and d) B-

B and N-N defects are shown to induce more trap states. e) Depiction 

of local atomic environments for deep, shallow and no defect cases.   

 
 

Fig. 6. a) Eform vs density for 1000 aBN+10 % H derived from variable 

initial density structures. b) Atomic arrangements corresponding to 
high/low Eform. 

 

           
 
Fig. 7. Atomic charge differences in samples with a) and without b) 10 

% H, the porosity ~ 0.25 is found to have distinctive distributions as 

indicated by yellow ellipses. Mean pore sizes are ~ 3 Å with 10% H 

inclusion, while ~ 4.3 Å for samples with no H.  
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and shown to follow the predicted trend in Fig.8(c), 

nevertheless more sampling will be needed in the future to 

reach a more general conclusion. 

 

 

IV. SUMMARY AND OUTLOOK 

 

A novel, efficient, and general simulation approach based 

on quantum mechanical simulations was put forward that 

accelerates amorphous density-energy landscape mapping 

and material characterization. The model is validated by a 

comprehensive study of aBN and k value results are found to 

agree well with experimental findings. Furthermore, 

previously unreachable insights into factors affecting k value 

engineering were obtained by in debt atomistic analysis of 

segregation trends, tail states and trap levels, and H impurity 

induced effects. 
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Fig. 8.  a) Comparison of porosities in structures with and without H vs 

Eform b) k values vs porosity of aBN structures without H content 
calculated from DFT+KMC and cMD methods. c) k value vs porosity 

of aBN structures containing H.    
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