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Abstract—We present an efficient simulation method for metal
grain growth that combines Voronoi tessellation and the Monte
Carlo method. The accuracy of our model is validated through
its ability to reproduce theoretical predictions of film stress and
grain boundary energy. The model can identify stress hot spots
and generate grain size statistics potentially useful for estimating
metal line failure. Our results demonstrate the utility of this
approach for studying metal grain growth and its impact on
device failure.

Index Terms—DRAM metal line, grain growth, film stress,
voids formation

I. INTRODUCTION

In state-of-the-art semiconductor fabrication, controlling the
grain growth in the metal lines is important to prevent device
failure. From a macroscopic point of view, grains grow as
long as the total free energy of the system decreases while the
three major energies (the stress energy, the grain boundary
energy, and the surface energy) compete with each other
[1]. At the microscopic level, multiple physics processes are
involved, including diffusion, nano-void formation, slipping,
and dislocation formation, making it challenging to develop a
comprehensive simulation model. Various methods have been
developed to tackle this challenge, such as molecular dynam-
ics [2], the phase field method [3], Monte Carlo method [4],
and combinations of these methods [4]. A brief summary of
these methodologies can be found in Ref. [2].

To tackle this intricate issue, we have developed a simple
yet effective model utilizing Voronoi tessellation [5] and the
Monte Carlo method. The underlying concept of our approach
is that the atom density at grain boundaries differs from the
density inside the grain [1], [6]. Additionally, we enforce
the conservation of the total number of atoms during grain

growth. Based on these principles, we study two distinct types
of evolution models: the void evolution model and the stress
evolution model (Fig. 1). These models represent two limiting
cases that can be modeled relatively easily.

The first limiting case, void formation, conserves the total
grain boundary volume without any stress buildup. In this case,
the total grain volume and the total grain boundary volume are
conserved separately. As a result, the grain boundary thickens
as grains grow, which can be accounted for as nano-voids. In
the second case, where stress builds up, a constant thickness
of the grain boundary layer is assumed. As the total grain
boundary area decreases to reduce the grain boundary energy
during grain growth, the total grain boundary volume also
decreases. To compensate for the decreasing grain boundary
volume, grains must stretch to occupy the space with the same
number of atoms, resulting in the generation of tensile stress.
However, since the entire reduced grain boundary volume is
converted to the tensile strain in this model, it excludes the
possibility of slipping among grains, making it a limiting
case. In reality, the situation lies between the two limiting
cases, where partial stress relaxation with nano-void formation
happens simultaneously.

II. METHODS

A. Granular region generation and grain growth model

Initially, if a non-zero initial stress is expected, stress is
calculated based on the deposition conditions. Then the grain
seeds are randomly distributed to achieve the desired average
initial seed density in a fine mesh that can resolve the grain
boundaries. The entire simulation domain undergoes Voronoi
tessellation to generate the initial grain distribution. If the
initial size distribution or the grain boundary thickness is
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position dependent, it is important to appropriately reflect these
initial conditions in the seed distribution or thickness, as the
final result is strongly influenced by the initial conditions. At
each mesh node, the initial grain field (A) is defined with a
function of the distance (l) to the bisecting plane of the two
nearest seeds:

A = 1− f(l), (1)

where f(l) is a function of the distance that ranges from 0
to 1. In all the examples presented here, we used f(l) =
exp(−l2/l2c) where lc is the characteristic length. When the
value of A is lower than the pre-defined threshold value, the
mesh node is considered as a boundary node. The threshold
value and lc were defined to make the initial grain boundary
thickness to be 0.2 nm for comparison with Ref. [6]. In the
void formation option, lc is automatically adjusted to keep the
local VGB constant before and after each local tessellation.
Conversely, in the strain buildup case, lc remains constant
throughout the simulation(Fig. 1).

Grain growth simulation begins by selecting a grain to be
cannibalized by its neighbors. The seed of the selected grain is
removed, and the surrounding region of the grain undergoes
local tessellation. The purpose of the local tessellation is to
confine the local effects within the tessellation area during the
void formation or the strain evolution. To facilitate efficient
local tessellation, all mesh nodes within a grain are grouped
based on the nearest neighbor grain index. Fig. 2 shows the
example of the local tessellation. In Fig. 2a), the grain at
the center is selected for removal. The area enclosed by the
white broken lines in Fig. 2c) represents the minimal local
tessellation area. With a larger tessellation area, the results are
averaged within that area. In the case of the void formation
model, the newly generated boundary is considered as a void.
The selection of the grain is performed using the Monte Carlo
method. This process continues until the average grain size
reaches the specified final grain size.

Grain selection rate is modeled with the effective activation
energy composed of the size-, stress-, and interface-dependent
activation energy, and given by:

r = r0 exp
(
−Ea

kT

)
, (2)

Ea = ksize

(
s

s0

)p

+ kstressu+ ∆Eb, (3)

where r0 is the effective rate constant, k the Boltzmann con-
stant, T the absolute temperature, Ea the effective activation
energy, ksize the energy constant of the grain size dependence,
s the grain size, s0 the reference grain size, p the power factor,
kstress the stress energy constant, u the stress energy density,
and ∆Eb the energy change from any additional effect such
as a boundary effect. The size of each grain (s) is calculated
using the square or cube approximation method.

In Eq. 3, the first term is designed to capture the phe-
nomenon of Ostwald ripening or grain coarsening [7], with
a positive ksize. This term accounts for the merging of smaller

Fig. 1. Two limiting cases of the grain growth model. a) Local tessellation
domain, b) void formation case, c) strain evolution case.

Fig. 2. Grain growth example. a) grain index field with boundaries before
removal, b) grain field, c) the minimal local tessellation area with neighbor
grain index field, d) new grain boundaries with new neighbor index field after
merging. The region in this example is the part of Fig. 5d) enclosed by the
black line.

grains into larger ones over time. The second term represents
the influence of the stress on the growth rate, and the last
term includes all other free energies associated with the grain
merging. One example of the third term is the binding energy
at material interfaces, which can change the merging rate.

Although the rate expression bears some resemblance to
the rate of the kinetic Monte Carlo method, it is important
to note that it is an effective parameter and does not directly
correspond to a specific microscopic physical process. This
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is because in the simulation, during a single grain removal
and merging step, many atoms are simultaneously moving
from one grain to its neighboring grains. As a result, the rate
expression serves as an effective parameter that captures the
overall behavior of grain merging in the simulation, rather than
representing a specific microscopic process in detail.

While it is possible to solve the physical processes described
by Eqs. 2 and 3 in a fully stress-coupled manner with a small
structure, it is not practical for the applications of our interest
due to computational burden associated with frequent stress
simulation using a fine mesh. Therefore, in this report, we
have employed a one-way stress coupling approach in which
stress is not updated at each grain merging step and solved
before and after the entire grain growth.

B. Void formation without stress buildup

The first limiting case (Fig. 1b) corresponds to grain growth
without transient stress buildup, where the conservation of the
total grain boundary volume (grain boundary area × thickness
of the grain boundary) is required. To preserve the grain
boundary volume, the thickness of the grain boundary should
increase during grain growth, as the total grain boundary area
tends to decrease. In Fig. 1b), the thick red region represents
the newly created void volume resulting from a grain merging
step. In a real situation, the shape of the void changes to reduce
the surface area through a diffusion process. However, in our
model, our primary focus is on the volume of the void, and
the generation of a realistic void shape is not pursued.

C. Stress buildup without void formation

The other limiting case (Fig. 1c) is the stress buildup without
a void formation. The analytic strain is given by

ε =
a
d0
− a

d

1− a
d0

≈
(
a

d0
− a

d

) (
1 +

a

d0

)
, (4)

where d0 is the initial grain size, d the final grain size, and
a the grain boundary thickness (Fig. 3). Although Eq. 4 is
derived with a two-dimensional structure, it is also true for
the three dimension.

Fig. 3. Two dimensional grain merging schematic to derive the strain and the
grain boundary energy.

Fig. 4. Comparison of energies between simulations (symbols) and the
analytic model (lines) for two-dimensional grain growth.

Eq. 4 is similar to the strain in Ref [6] with an extra factor
2 and more rigorous extension. We got the same analytic grain
boundary energy as Ref [6] which is given by

uGB = βγ

(
1
d
− 1
d0

)
, (5)

where β is the dimension of the growth space, and γ the grain
boundary energy density.

In grain growth simulation, the change of strain is calculated
locally at each grain merging step and it is given by

∆ε =
(
V − V ′

GB

V − VGB

) 1
D

− 1, (6)

where V is the local tessellation volume, V ′
GB the newly

generated grain boundary volume after local tessellation using
the constant grain boundary thickness, VGB the grain boundary
volume before grain merging, and D the growth dimension.

III. RESULTS AND DISCUSSION

Because our model, particularly Eq. 3, is not derived rig-
orously from a fundamental physics equation, it is essential
to carefully check the validity by comparing the results with
experimental observations or other theoretical studies. As an
initial step, we applied our model to a simple two-dimensional
grain growth scenario, as depicted in Fig. 4. The comparison
between the analytic model using Eqs. 4-5 and the numerical
simulations employing Eqs. 2, 3, and 6 demonstrates a good
agreement. In this simple structure, the initial conditions (d0

and a in Eq. 4 of analytic model, and the intial grain size
and the lc in the simulation model) play a critical role in
determining the strain and the void size during the grain
growth. Additionally, we studied the grain size distribution by
conducting 300 sample runs with a simple 50×50 nm2 planar
structure. The obtained size distribution closely aligns with a
log-normal distribution (Fig. 6), consistent with findings from
many previous studies [3], [8], [9].
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Fig. 5. Two limiting cases of grain growth. a) the initial distribution with
the average size of 1nm. b) the stress energy density with the strain buildup
scenario. c) the void formation scenario with random grain selection. d) the
void formation scenario with size dependent selection plus the boundary
effects. For b) and d), T = 700K, ksize =1eV, kstress =0, s0 =10nm,
p =0.33, and ∆Eb =0.2eV were used. In case c), ksize =0 and ∆Eb =0.
For stress simulation, E=100 GPa and ν=0.28.

As the next step, we applied the model to a simplified
two-dimensional toy structure of the DRAM metal line. The
results of the two scenarios are shown in Fig. 5. In case
b) and d), we incorporated boundary effects by assigning
∆Eb = 0.2 eV to the grains at the oxide boundary. The stress
evolution model reveals a stress concentration near the top of
the corrugated oxide, which has the potential to cause an open
circuit failure. Additionally, the presence of a positive ∆Eb

leads to slower growth at the material boundary compared to
the bulk, resulting in a visible seam at the center of the narrow
trench, as shown in Fig. 7. These findings are consistent with
the experimental transmission electron microscope (TEM)
images (Figs. 14 and 22 in Ref. [10]).

IV. CONCLUSION

We have presented an efficient grain growth model that
combines Voronoi tessellation and the Monte Carlo method.
This model has demonstrated the capability to reproduce
the stress energy and grain boundary energy predicted by
a theory, as well as the typical log-normal grain size dis-
tribution observed in simple two-dimensional structures. By
incorporating a simple conservation law to preserve the total
number of atoms and considering boundary effects, our model

Fig. 6. Grain size ditribution after grain growth from 1nm initial average size
to 6nm average size. Simulation was performed using a 50×50 nm2 planar
square with a periodic boundary condition. The line is the log-normal fit.

Fig. 7. Grain growth simulation in a DRAM metal line structure: a)
three-dimensional view, b) vertical cross-section, c) horizontal cross-section.
Simulation conditions are same as Fig. 5 d).

successfully reproduced the observed seam in a DRAM metal
line and predicted the stress concentration hot spots.
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