# DC/AC/RF Characteristics of Multi-Channel GAA NS FETs with ML and BL MoS<sub>2</sub>

Yueh-Ju Chan

Institute of Communications Engineering and Parallel and Scientific Computing Laboratory National Yang Ming Chiao Tung University Hsinchu 300093, Taiwan.

yjchan@mail.ymlab.org

Sekhar Reddy Kola EECS International Graduate Program and Parallel and Scientific Computing Laboratory National Yang Ming Chiao Tung University Hsinchu 300093, Taiwan sekhar.kola@mail.ymlab.org

Abstract—For the first time, we examine the performance of gate-all-around nanosheet field effect transistor (GAA NS FET) with both monolayer (ML) and bilayer (BL) molybdenum disulfide (MoS<sub>2</sub>). As compared to the control sample of silicon (Si), MoS<sub>2</sub> devices exhibit reduced short-channel effects (SCE) owing to its larger band gap and larger effective mass. The GAA NS FET with BL MoS<sub>2</sub> possesses moderate energy bandgap and large channel thickness which exhibits superior on state current and voltage gain.

Keywords-GAA NS FETs, BL and ML MoS<sub>2</sub>, electronic properties, DC/AC/RF characteristics.

# I. INTRODUCTION

In recent years, transition metal dichalcogenides (TMDCs) have gained considerable attention due to their 2D properties and reasonable energy bandgaps. It has been found that MoS<sub>2</sub> belongs to the TMDC family with an indirect bandgap of 1.2 eV in bulk, while performing direct bandgap of 1.8 eV in monolayer [1]-[2]. MoS<sub>2</sub> exhibits low mobility when it is deposited on SiO<sub>2</sub>; however, when it is deposited on HfO<sub>2</sub> as the oxide of the transistor, it exhibits a higher mobility of 217 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup> [3]. In contrast to Si nanodevices, which suffers from serious SCEs, MoS<sub>2</sub> devices may have superior electrical properties and have been studied as potential candidates for advanced CMOS technologies [4]-[5]; nonetheless, the results are still limited to reach the requirement to sub-10 nm and high on/off ratio simultaneously. Computationally, device simulation by using the density functional theory (DFT) and the nonequilibrium Green's function (NEGF) [6] can provide the most accurate results; however, huge computational resources are required for complicated cases. Thus, integrating key result of DFT calculation into a conventional device simulation, after careful calibration with the results of DFT and NEGF, enables us to explore 3D devices effectively [7].

In this study, based on a properly calibrated device simulation with the results of DFT and NEGF, we first explore GAA NS FET with ML and BL MoS<sub>2</sub> films, where the calibrated bandgap, electron affinity, and effective mass of MoS<sub>2</sub> are then incorporated into device simulation to explore DC/AC/RF characteristics of a three-channel GAA NS FET.

# II. DEVICE SIMULATION OF GAA NS FET MOS2

For the GAA NS FET in Fig. 1(a), the ML and BL MoS<sub>2</sub> channels are shows in Fig. 1(b). The cut  $c_1$  plane of the device is shown in Fig. 1(c) with a 0.6-nm SiO<sub>2</sub> at the inner layer and a 2-nm HfO<sub>2</sub> at the outer layer. The first-principle simulations of ML and BL MoS<sub>2</sub>, via QuantumATK [8], lie in the first Brillouin zone of  $\Gamma MK\Gamma$ , as shown in Fig. 1(d). The DFT calculations are with the Perdew-Burke-Ernzerhof (PBE) and generalized gradient approximation (GGA) functionals. The k point sampling of ML and BL MoS<sub>2</sub> is  $10 \times 10 \times 1$  and  $10 \times 10 \times 2$ , respectively, with a 1.5-nm vacuum layer for the relaxation. A simulation of the band structure is then conducted for the

Yiming Li Institue of Communications Engineering and Parallel and Scientific Computing Laboratory National Yang Ming Chiao Tung University Hsinchu 300093, Taiwan ymli@mail.ymlab.org



Fig. 1. (a) A 3D schematic diagram of the three-channel GAA NS FET using silicon (t\_{ch} = 5 nm), ML MoS\_2 (t\_{ch} = 0.65 nm), and MoS\_2 BL (t\_{ch} = 1.4 nm) as its channel, respectively. (b) The schematic plot of ML  $MoS_2$  using as channel. (c) The cut-c<sub>1</sub> plane in GAA NS FET (d) The first Brillouin zone of MoS2.

bandgap, effective mass, and density-of-states (DOS) of the electron affinity. Then, we plug the calculated electronic structures of MoS<sub>2</sub> into a density gradient based quantumcorrected 3D drift-diffusion simulation to study device characteristics of GAA NS FETs. The channel thickness of ML and BL MoS<sub>2</sub>, and Si are 0.65, 1.4, and 5 nm, respectively. A high-field transport mobility based on Caughey-Thomas formula for the scattering is adopted. For electrons in ML MoS<sub>2</sub>, the saturation velocity is given by  $v_d = \mu_{LF} F / (1 + \mu_{LF}) F / (1 + \mu_{LF})$  $(\mu_{LF}F/\nu_{sat})^{\gamma})^{\gamma}$ , where the low-field mobility  $\mu_{LF} \equiv (\partial \nu_d / \partial F)|_{F \to 0} \approx 36.7 \text{ cm}^2/\text{V}^{-1}\text{s}^{-1}$  and  $\gamma \approx 2.8$  [9]. For the recombination and generation, we use the Schottky Read Hall and Auger models based on fabricated MoS<sub>2</sub> devices [10]. Details of device settings are listed in Tab. I.

## **III. RESULTS AND DISCUSSION**

 $MoS_2$  Brillouin zone is illustrated in Fig. 1(d). We calculate the band structure along  $\Gamma M K \Gamma$  in the first Brillouin zone. The results of band structure are shown in Figs. 3(a)-(c).In ML MoS<sub>2</sub>, it exhibits a direct bandgap of 1.78 eV. In BL MoS<sub>2</sub>, however, shows an indirect bandgap of 1.40 eV. This can be explained by the fact that  $\Gamma$  point of the valence band

TABLE I LIST OF THE ADOPTED PARAMETERS IN THE DEVICE SIMULATION OF GAA NS FETs. IT INCLUDES THE GATE LENGTH LG, THE OXIDE Thickness  $T_{\rm ox}$  for SiO\_2, the  $T_{\rm ox2}$  for HFO\_2, and the Channel Doping PROFILE.

| Parameters                           | Numeric Values       |  |
|--------------------------------------|----------------------|--|
| $L_{g}(nm)$                          | 6~16                 |  |
| W (nm)                               | 10                   |  |
| t <sub>ch</sub> (nm)                 | 0.65                 |  |
| t <sub>ox</sub> (nm)                 | 0.6                  |  |
| t <sub>ox2</sub> (nm)                | 2                    |  |
| EOT (nm)                             | 0.96                 |  |
| Channel Doping (cm <sup>-3</sup> )   | 5 X10 <sup>17</sup>  |  |
| S/D Doping (cm <sup>-3</sup> )       | 1X10 <sup>20</sup>   |  |
| Sext/Dext Doping (cm <sup>-3</sup> ) | 1.2X10 <sup>19</sup> |  |

- Step 1: DFT calculations for the bandgap, effective Mass, and electron Affinity.
- Step 2: Device simulation by numerically solving a set of density gradient based quantum-corrected 3D drift-diffusion equations.
- Step 3: Calibration of the device simulation with the results of NEGF simulation for the accuracy tuning.
- Step 4: Apply the validated device simulation for the multi-channel GAA NS FETs with ML and BL MoS2.





Fig. 3. (a) Schematic diagram of the ML and BL MoS<sub>2</sub> structures. The thicknesses of ML and BL are 0.65 and 1.4 nm, respectively. The simulated values of band gap  $E_g = 1.78$  and 1.40 eV are for the (b) ML and (c) BL, respectively. (d) Plots of the DOS using absolute energy as the zero point of the eV for simulating the electron affinity of ML and (e) BL, where the calculated values of electron affinity ( $\chi_c$ ) are 4.26 and 4.21 eV in the ML and BL, respectively.

maximum (VBM) in BL MoS<sub>2</sub> has shifted to a higher value than K point, while stays at lower value in ML MoS<sub>2</sub>. The K point is chosen as the symmetric point of conduction band minimum (CBM) in both ML and BL calculations of the electron effective mass. The simulated effective mass in BL



Fig. 4. The calibrated  $I_D$ -V<sub>G</sub> curves of the N-type MoS<sub>2</sub> device between the adopted device and NEGF simulations.



Fig. 5. (a) The transfer characteristic of the 10-nm ML MoS<sub>2</sub> GAA NS FET, compared with the Si one. (b) A comparison of the  $V_{th}$  rolloff between the ML MoS<sub>2</sub> and Si devices. The variation of the (c) subthreshold swing (SS) and (d) drain-induced barrier lowing (DIBL) with respect to the gate length (L<sub>G</sub>).

MoS<sub>2</sub> is larger than that in ML MoS<sub>2</sub>, the results perform  $0.608m_0^*$  in BL, whereas  $0.456m_0^*$  in ML. According to Figs. 3(d)-(e), the electron affinity of both cases is nearly identical with marginal differences between them. As the results, for ML and BL, the values are 0.426 and 0.421, respectively. The calculated results compared with different theoretical results [1], [7], [12]-[16] are listed in Tab. II; they are revealed that



Fig. 6. (a) The  $C_g$ - $V_g$  curves comparing with ML MoS<sub>2</sub> and Si. (b) The  $C_g$ - $V_g$  curves of the ML and BL MoS<sub>2</sub> GAA NS FETs at  $L_g$  = 10 nm.

the results are in engineering reasonable values for further device simulation. According to the results of DFT, a proper calibration of the quantum mechanically corrected device simulation with the simulation of NEGF is performed, as shown in Fig. 4 at  $V_{ds} = 0.065$  V. The simulated results of transfer curve turns out to fit in the NEGF method well.

We do further use the validated device simulation results for the multi-channel GAA NS FET with ML/BL MoS<sub>2</sub> and Si. The results are shown in Fig. 5. Due to the larger channel thickness (t<sub>ch</sub>) and the greater mobility of Si, the I<sub>on</sub> of Si are larger than MoS<sub>2</sub> shown in Fig. 5(a). However, after we extract the linear threshold voltage (V<sub>th\_lin</sub>) at 206 mV in both Si and ML MoS<sub>2</sub> devices at the gate length (L<sub>g</sub>) in 10 nm in Fig. 5(b). As the L<sub>g</sub> value is increased from 6 to 16 nm, due to the 2D t<sub>ch</sub> of MoS<sub>2</sub> with larger bandgap as well as larger m<sub>0</sub><sup>\*</sup>, the SS and DIBL are remaining stable in the ML MoS<sub>2</sub> cases while showing strong degradation in Si in Figs. 5(c) and (d), respectively. The degradation ratios (38.7% and 410.5%, respectively) are revealed in Si, meanwhile remains sustainable with low degradation ratio (7.7% in SS and 39.9% in DIBL) in ML MoS<sub>2</sub>.

Figure 6(a) shows the gate capacitance versus gate voltage  $(C_g-V_g)$  curves of the explored devices, where  $C_g$  in Si is mainly due to the oxide layer, whereas  $C_g$  in MoS<sub>2</sub> is due to t<sub>ch</sub>.  $C_g$  in Si device is 19.6% larger than ML MoS<sub>2</sub>, which means that MoS<sub>2</sub> could have better performance comparing with Si in GAA NS devices due to larger gate capacitance cause larger power consumption in Si device.  $C_g-V_g$  curves with number of channels in ML and BL MoS<sub>2</sub> is shown in Fig. 6(b). As channel number increases, the value of  $C_g$  enhances; besides, the shift of  $C_g$  between ML and BL MoS<sub>2</sub> in 3-channel is smaller than that of 2- and 1-channel. These results are due to the effective channel area in 3-channel turn out to become smaller.



Fig. 7. (a)  $I_d$ -V $_g$  curves compared with ML and BL  $MoS_2$  in linear region (V $_d$  = 0.05 V) (b) The V $_{th}$  of ML and BL  $MoS_2$ . (c) The DIBL and of ML and BL  $MoS_2$  with varied  $L_g$ . (d) The Bode plot of ML and BL  $MoS_2$ . Results showing that the 3-channel BL  $MoS_2$  has the largest gain as well as  $I_{on}$ .

The simulated  $I_d$ -V<sub>g</sub> curves in both ML and BL MoS<sub>2</sub> with respect to the channel number are also under the extraction of V<sub>th\_lin</sub> at 206 mV in L<sub>g</sub> = 10 nm in Fig. 7(a). The results of I<sub>d</sub>-V<sub>g</sub> are shown under V<sub>ds</sub> = 0.05 V in Fig. 7(b). About twice t<sub>ch</sub> are found in BL MoS<sub>2</sub> compared with ML MoS<sub>2</sub>, the magnitudes of I<sub>on</sub> of BL are about twice compared with ML MoS<sub>2</sub> ones. Next, we illustrate the Bode plot, shown in Fig. 7(c) by considering a common source (CS) amplifier. The

| BL MOS <sub>2</sub> , COMPARED WITH REPORTED RESULTS. |         |                                    |         |                   |                      |                       |  |
|-------------------------------------------------------|---------|------------------------------------|---------|-------------------|----------------------|-----------------------|--|
|                                                       | Ba      | Bandgap Ele                        |         | Electron affinity |                      | Effective mass        |  |
| Si                                                    | 1.12 eV |                                    | 4.08 eV |                   | 0.187 m <sub>0</sub> |                       |  |
| ML                                                    | 1.78 eV |                                    | 4.26 eV |                   | 0.459 m <sub>0</sub> |                       |  |
|                                                       | Expt.   | 1.8 [1]                            |         |                   |                      |                       |  |
| Ref.                                                  | Sim.    | 1.9 [11]<br>1.68 [12]<br>1.57 [13] | Sim.    | 4.03 [14]         | Sim.                 | 0.51 [15]<br>0.45 [7] |  |
| 2L                                                    | 1.40 eV |                                    | 4.21 eV |                   | 0.608 m <sub>0</sub> |                       |  |
| Ref.                                                  | Sim.    | 1.5 [14]                           | Sim.    | 4.14 [14]         | Sim.                 | 0.52 [15]             |  |

TABLE II LIST OF CALCULATED ELECTRONIC PROPERTIES OF ML AND BL MOS<sub>2</sub>, COMPARED WITH REPORTED RESULTS.

TABLE III LIST OF THE ML AND BL  $MOS_2$  Frequency Response of 3DB and Unity Gain  $F_T$  (Hz).

|     | ML<br>1-ch | BL<br>1-ch | ML<br>2-ch | BL<br>2-ch | ML<br>3-ch | ML<br>3-ch |
|-----|------------|------------|------------|------------|------------|------------|
| 3dB | 8.27e11    | 1.30e12    | 8.96e11    | 1.98e12    | 1.13e12    | 1.13e12    |
| fT  | 8.73e11    | 9.19e11    | 9.09e11    | 8.69e11    | 8.90e11    | 8.32e11    |

TABLE IV LIST OF THE EXPLORED 3-CHANNEL DEVICE WITH ML AND BL  $MOS_2$  Films, Compared with Different Reported Results.

| Papers       | Materials           | SS(mV/dec) | DIBL(mV/dec) | I(A/µm)               |
|--------------|---------------------|------------|--------------|-----------------------|
| This<br>work | MoS <sub>2</sub> ML | 58.0       | 14.1         | 4.76×10 <sup>-4</sup> |
| [17]         |                     | 61.6       | 14.9         | $1.52 \times 10^{-4}$ |
| [18]         |                     | 70.4       | 42.2         | 4.04×10 <sup>-4</sup> |
| This<br>work | MoS <sub>2</sub> BL | 60.3       | 15.2         | 7.20×10 <sup>-4</sup> |
| [17]         |                     | 64.6       | 28.0         | $1.25 \times 10^{-3}$ |
| [18]         |                     | 89.0       | 90.0         | 5.31×10 <sup>-4</sup> |

GAA NS FET with the BL  $MoS_2$  channel shows its well performance on the relatively larger gain compared with the ML MoS<sub>2</sub>; especially, in the 3-channel GAA NS FET with BL MoS<sub>2</sub>. Higher gain in 3-channel can refer to the characteristics of multi-channel, while in BL can derive in its larger  $m_0^*$  and twice t<sub>ch</sub> in contrast to ML MoS<sub>2</sub>. The frequency response in 3dB and f<sub>T</sub> is shown in Tab. III. All the cases in ML and BL MoS<sub>2</sub> lie on the similar frequency response.

As shown in Fig. 7(d), the estimated DIBL and SS of ML and BL  $MoS_2$  indicate that the BL  $MoS_2$  has larger degradation, compared with the results of ML MoS<sub>2</sub> due to the larger t<sub>ch</sub> as well as m<sub>0</sub><sup>\*</sup>. However, the values of DIBL in 1channel has higher value than in other cases, means that the main reason cause the increase of value in DIBL is depending on the effective area of the structure. Despite the fact that BL MoS<sub>2</sub> performs larger value in SS, the values comparing with Si is still much smaller, which means that BL MoS<sub>2</sub> is still a practical device to reduce the SCE with its 2D tch and larger m0\*. To support the reliable SS, DIBL, and Ion we calculate in this work for 3-channel GAA NS FET in ML and BL MoS<sub>2</sub>, the results are also compared with other papers in [17]-[18], as listed in Tab. IV. It shows that the results in this study shows that with reasonably low SS and DIBL in this study can perform highest Ion comparing with other simulation results.

# **IV. CONCLUSIONS**

In summary, we have examined DC/AC/RF characteristic of the explored multi-channel GAA NS FET with ML and BL MoS<sub>2</sub> films. As compared to the control sample of Si, MoS<sub>2</sub> devices exhibit reduced SCE. BL MoS<sub>2</sub> with its moderate band gap comparing with Si and ML MoS<sub>2</sub> as well as larger channel thickness in 2D properties comparing with ML MoS<sub>2</sub> can improve on the state current and voltage gain of GAA NS FETs. Despite the fabulous results shown in this work, there are still few problems that are not considered in this work, such as the contact resistance between S/D metal and MoS<sub>2</sub>, also the effect of the device when considering different types of oxide layer. Our future work will focus on maintaining excellent results after considering the contact resistance. Also, we will compare the results of MoS<sub>2</sub> GAA NS FET with different types of oxide layer including Al<sub>2</sub>O<sub>3</sub>, and hBN.

### ACKNOWLEDGMENT

This work was supported in part by the National Science and Technology Council, Taiwan, under Grant MOST 111-2221-EA49–181 and NSCT 112-2218-E-006-009-MBK; in part by the "2022 Qualcomm Taiwan Research Program (NYCU)" under Grant NAT-487835 SOW.

## REFERENCES

- K. F. Mak et al., "Atomically thin MoS<sub>2</sub>: a new direct-gap semiconductor," Phys Rev Lett, vol. 105, no. 13, 136805, Sep. 2010.
- [2] C.-Y. Chen et al., "Electronic Structures of Monolayer Binary and Ternary 2D Materials: MoS<sub>2</sub>, WS<sub>2</sub>, Mo<sub>1-x</sub>Cr<sub>x</sub>S<sub>2</sub>, and W<sub>1-x</sub>Cr<sub>x</sub>S<sub>2</sub> Using Density Functional Theory Calculations," Nanomaterials, vol. 13, no. 1, 68, Dec. 2022.
- [3] B. Radisavljevic et al., "Single-layer MoS<sub>2</sub> transistors," Nature Nanotech, vol. 6, no. 3, pp. 147-150, Mar. 2011.
- $\begin{array}{ll} \mbox{[4]} & \mbox{Y.-Y. Chung et al., "First Demonstration of GAA Monolayer-MoS}_2 \\ & \mbox{Nanosheet nFET with 410 } \mu A/\mu \ m \ I_D \ at \ 1V \ V_D \ at \ 40nm \ gate \ length," \\ & \mbox{in IEDM, Dec. 2022, pp. 823-826.} \end{array}$
- [6] Y. Yoon et al. "How Good Can Monolayer MoS<sub>2</sub> Transistors Be?," Nano Lett., vol. 11, no. 9, pp. 3768–3773, Sep. 2011.
- [7] A. Pon et al., "Simulation of 2D Layered Material Ballistic FETs using a Hybrid Methodology," in IEEE EDSSC, Jun. 2019, pp. 1-3.
- [8] A. Kuc et al., "Influence of quantum confinement on the electronic structure of the transition metal sulfide  $TS_2$ ," Phys. Rev. B, vol. 83, no. 24, 245213, Jun. 2011
- [9] K. K. H. Smithe et al., "High-Field Transport and Velocity Saturation in Synthetic Monolayer MoS<sub>2</sub>," Nano Lett., vol. 18, no. 7, pp. 4516-4522, Jul. 2018.
- [10] J.-H. Hur et al., "A theoretical modeling of photocurrent generation and decay in layered MoS<sub>2</sub> thin-film transistor photosensors," J. Phys. D: Appl. Phys., vol. 50, no. 6, 065105, Jan. 2017.
- [11] L. Liu et al., "Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors," IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3042–3047, Sep. 2011.
- [12] S. Ahmad and S. Mukherjee, "A Comparative Study of Electronic Properties of Bulk MoS<sub>2</sub> and Its Monolayer Using DFT Technique: Application of Mechanical Strain on MoS<sub>2</sub> Monolayer," Graphene, vol. 03, no. 04, pp. 52-59, 2014.
- [13] A. Kumar and P. K. Ahluwalia, "A first principle Comparative study of electronic and optical properties of 1H – MoS<sub>2</sub> and 2H – MoS<sub>2</sub>," Mater. Chem. Phys., vol. 135, no. 2, pp. 755-761, Aug. 2012.
- [14] H. Kim and H. J. Choi, "Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations," Phys. Rev. B, vol. 103, no. 8, 085404, Feb. 2021.
- [15] D. Wickramaratne et al., "Electronic and thermoelectric properties of few-layer transition metal dichalcogenides," J. Chem. Phys., vol. 140, no. 12, 124710, Mar. 2014.
- [16] S. Yu et al., "Phase transition, effective mass and carrier mobility of MoS<sub>2</sub> monolayer under tensile strain," Appl. Surf. Sci., vol. 325, pp. 27–32, Jan. 2015.
- [17] A. Mukhopadhyay et al., "The effect of the stacking arrangement on the device behavior of bilayer  $MoS_2$  FETs," J. Comput Electron, vol. 20, no. 1, pp. 161–168, Feb. 2021.
- [18] W. Cao et al., "2D Semiconductor FETs—Projections and Design for Sub-10 nm VLSI," IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3459–3469, Jan. 2015.