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Abstract—We calculate the contact resistance for an edge- and
top-contacted 2D semiconductor. The contact region consists of
a metal contacting a monolayer of MoS2 which is otherwise
surrounded by SiO2. We use the quantum transmitting boundary
method to compute the contact resistance as a function of
the 2D semiconductor doping concentration. An effective mass
Hamiltonian is used to describe the properties of the various
materials. The electrostatic potentials are obtained by solving
the Poisson equation numerically. We incorporate the effects of
the image-force barrier lowering on the Schottky barrier and
examine the impact on the contact resistance. At low doping
concentrations, the contact resistance of the top contact is lower
compared to edge contact, while at high doping concentrations,
the edge contact exhibits lower resistance.

Index Terms—2D material, image-force barrier lowering, top
and edge contact, QTBM

I. INTRODUCTION

In recent years, a lot of efforts have been directed to-
wards integrating two-dimensional (2D) semiconductors as
the channel material in next-generation transistors [1]–[3].
However, one of the challenges limiting the performance of
2D semiconductors such as transition-metal dichalcogenides
(TMDs) is the high contact resistance (> 1 kΩµm), when
contacting the TMD with a metal [4], [5]. The high contact
resistance is usually due to the TMD/metal interface forming
a Schottky contact characterized by the so-called Schottky
barrier which charge carriers have to overcome to flow across
the TMD/metal interface [6], [7]. Recently, we have shown
that for edge-contacted devices [8], we can achieve a contact
resistance of 50 Ωµm at n-doping of ∼ 1013 cm−2 when
a lower-κ dielectric like SiO2 is used as the surrounding
dielectric material.

In this work, we calculate and compare the contact re-
sistance of edge- and top-contacted devices using quantum
transport simulations including the image-force barrier lower-
ing (IFBL) [9]. The quantum transport calculations are based
on the quantum transmitting boundary method (QTBM) [10],
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Fig. 1. Schematic of (a) an edge- and (b) top-contact configuration of a MoS2

monolayer contacting a metal source/drain contact.

[11] to simulate the transport through systems with open
boundaries. We use effective mass Hamiltonians to describe
the contact configurations consisting of different materials.
To calculate the potential in the simulation region, we solve
the Poisson equation numerically with the help of the finite-
element-based software FEniCSx [12], [13].

II. RESULTS

Figure 1 (a) and (b) illustrate the edge and top con-
tact, respectively. The contacts consist of a semiconducting
monolayer of MoS2, a metallic contact, and a surrounding
dielectric of SiO2. The thickness of the MoS2 is assumed
to be t2D = 0.62 nm, whereas the in-plane and out-of-
plane dielectric constants are ϵ∥ = 15.5ϵ0 and ϵ⊥ = 6.2ϵ0,
respectively [14]. The dielectric constant of SiO2 is assumed
to be 3.9ϵ0 and surrounds the MoS2 from above and below.
For the top contact, we insert a van-der-Waals (vdW) gap with
a thickness of tvdW = 0.2 nm. The Schottky barrier height
(SBH) is set to SBH = 0.3 eV while the vdW gap barrier
height is assumed to be 4.0 eV. Since we use effective mass
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Fig. 2. Contact resistances as a function of the doping concentration of the
MoS2 monolayer for the edge (black) and top (red) contact configurations.
The contact resistances are also shown in the case when the IFBL is not
considered with a dashed line.

Hamiltonians to model the band structures of the materials, we
define the effective masses of the MoS2 monolayer, the oxide,
and the metal as 0.5 me, 1.0 me, and 1.2 me, respectively
[15], [16].

Figure 2 demonstrates the contact resistance as a function
of the TMD doping concentration for both the edge and top
contact configuration. To show the impact of the IFBL on the
contact resistance, we plot the contact resistance both with
(full lines) and without (dashed lines) the IFBL added. For
both the edge and top contact, we observe a decreasing trend
in contact resistance when increasing the doping concentration.

Comparing the contact resistance before and after adding
IFBL, we conclude that the IFBL lowers the contact resistance
estimations by up to two orders of magnitude in both the
edge and top contact. For the edge contact, the IFBL has a
significant impact across the entire doping spectrum. In the
case of the top contact, the contact resistance does not react as
much to the presence of the IFBL at high doping concentration
> 5× 1012 cm−2.

When considering the IFBL, we see that contact resistance
is lower and decreases faster for the top contact compared
to the edge contact at low doping concentrations < 1 × 1013

cm−2. At high doping concentration > 1 × 1013 cm−2, the
decreasing trend in contact resistance stagnates for the top
contact and saturates to a value of 180 Ωµm. For the edge
contact, the decreasing trend flattens off more slowly, which
leads to a smaller contact resistance in the edge contact
compared to the top contact of 50 Ωµm.

In Figures 3 (a) and (b), we plot the potential energy land-
scape for the edge and top contact, respectively. The energy
landscape combines the solutions of the Poisson equation and
the IFBL and is used to calculate the contact resistance shown
in Fig. 2. We assume that the conduction band minimum of
the metal and the oxide is set to -14.0 eV and 0.0 eV with
respect to the vacuum level, respectively. For the TMD, we
take into the confinement energy of the 2D material when
setting the conduction band minimum of the TMD to -4.0 eV

with respect to the vacuum level. The Fermi level of the metal
is assumed to be at - 4.30 eV with respect to the vacuum level
and is taken as a reference to EF = 0.0 eV.

Figures 3 (d) and (e) demonstrate contour plots of the
solutions of the Poisson equation at a doping concentration
of N2D = 1.25 × 1012 cm−2 for the edge and top contact,
respectively. The position of the TMD is marked by the black
dotted lines. We apply Dirichlet boundary conditions set to a
Schottky barrier height (SBH) of SBH = 0.3 eV on the metal
contact interfaces. The rest of the boundaries of the simulation
region are modeled by Neumann boundary conditions. The
potential shows a depleted region in the TMD acting as an
energy barrier between the metal and the TMD. The depletion
length within the TMD is shorter than within the oxide since
the Schottky barrier is more effectively screened in the TMD
due to the doping of the TMD.

Figures 3 (f) and (g) show the IFBL in the case of the
edge and top contact, respectively. To derive the IFBL for
general metal-wedge/dielectric interfaces [9], we assume that
the TMD and the surrounding dielectric material have the same
dielectric constant equal to the dielectric constant of SiO2. The
IFBL acts as an attractive potential for charge carriers in the
vicinity of the metal. If the charge is an electron, it will induce
a positive charge distribution of equal magnitude on the metal
surface which is the image charge. Considering the presence
of an energy barrier between the electron and the metal, the
attraction of the electron to the image charge translates into a
lowering of the energy barrier. To make the figure readable,
we put an energy cutoff at −3 eV since the IFBL goes to
negative infinity at the metal/dielectric interface.

Figure 3 (c) shows potential energy slices of the energy
landscape taken in the x-direction in the middle of the TMD
for the edge and top contact. We show the potential energy
profile before (dashed lines) and after (full lines) adding the
IFBL. The IFBL significantly lowers the effective Schottky
barrier height by 0.17 eV and 0.16 eV for the edge and
top contact, respectively, which explains the drastically lower
resistance demonstrated in Fig. 2 when the IFBL is considered.

Even though the barrier lowering is stronger for the edge
contact, the top contact has an overall lower barrier height
both with and without the IFBL, which is due to the potential
dropping off across the vdW gap before reaching the TMD.
The barrier height with IFBL is 0.04 eV lower for the top
contact compared to the edge contact.

We observed that at low doping concentrations, the contact
resistance is lower for the top contact, which is due to the
lower barrier width and height in the x-direction of the top-
contacted TMD compared to the edge contact. For high doping
concentrations, the barrier width and height in the x-direction
of the TMD will become much smaller. For the top contact,
the resistance due to the tunneling through the vdW gap will
start to dominate at high doping concentrations resulting in
the earlier stagnation of the decreasing trend of the contact
resistance. Since the edge contact does not have a vdW gap,
the resistance continues to decrease. However, since the vdW
gap is very thin compared to the Schottky barrier, we expected
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Fig. 3. Contour plots of the energy landscapes of the (a) edge and (b) top contact and simulation domain used in the contact resistance calculations. (c)
Potential energy profiles taken from within the middle of the TMD. The full lines show the energy barrier in the x-direction within the TMD after the IFBL
is added to the solutions of the Poisson equation (dashed lines). Contour plots of the solution of the Poisson equation in case of the (d) edge and (e) top
contact. The solutions shown are obtained for a Schottky barrier height of SBH = 0.3 eV and a doping concentration of N2D = 1.25× 1012 cm−2. The
image-force energy for the (f) edge and (g) top contact. The surrounding dielectric material is assumed to be homogeneous with the dielectric constant of
SiO2 (ϵ = 3.9ϵ0). The location of the MoS2 is indicated by the black dotted lines.

that the impact of the vdW gap would be smaller than observed
leading to a comparable contact resistance for the edge and top
at high doping concentrations. Also, the fact that the contact
resistance in the top contact does not react as much to the
presence of the IFBL at high doping concentrations needs
further investigation.

III. METHODOLOGY

We use a quantum transport approach to calculate the
contact resistance in the edge and top contact configurations.
The contact resistance is defined as

1

ρc
=

2e2

h

∫ ∞

−∞
dE

∣∣∣∣df(E)

dE

∣∣∣∣ ∫ ∞

−∞

dky
2π

T (ky, E), (1)

where we integrate a transmission T (ky, E) through the sim-
ulation domain over the energy E and the wave number ky .
The energy E is the energy of an injected mode of which
the transmission is calculated. The transmission is dependent
on a ky wave number because we consider our device to be
infinite in the y-direction, which enables us to only consider
the transmission in an (x, z)-slice of device.

We consider the contact region as an open system, in which
we inject modes from the right into the TMD and measure the
transmission through the simulation region to the metal at the

left boundary. The open boundaries are obtained by calculating
the self energies Σ of the left and right boundaries of the
system using QTBM [10], [11]. We solve for the wavefunction
c throughout the system after injecting a mode B from the
right lead

[EI −H − Σ]c = B. (2)

Here, E is the energy of the injected mode B, H is the
Hamiltonian of the closed system and Σ contains the self-
energies of the contact leads. The Hamiltonian of the closed
system depends on the effective masses m∗(x, z) of the
different materials within the simulation domain, and the total
potential energy landscape U(x, z) of the contact region.

In general, multiple modes can be injected at a certain
energy E, however, due to confinement in the TMD and
when the injection energy is small enough, only one traveling
mode will be injected into the TMD at a particular energy.
Thus, we only need to solve (2) once per energy value E.
To find the transmission, we measure the wavefunction at the
left boundary cout of the simulation domain and calculate the
overlap with all the outgoing modes Bout possible in the left
lead [17]

T = Σµ|B−1
out,µ · cout|2vout,µ/vin. (3)
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The sum goes over all out-going modes in the left lead index
by µ, while vout,µ are the group velocities of the out-going
modes and vin is the group velocity of the incoming mode.

The potential energy landscape U is the sum of the solutions
to the Poisson equation and the IFBL. The Poisson equation is
solved self-consistently with the charge within the 2D material
and is given as

∇ · (ϵ̄(x, z)∇V (x, z)) = e [ND(x, z)− n(x, z)] (4)

where n(x, z) is self consistent charge carrier density

n(x, z) =
m∗kBT
πℏ2t2D

ln

[
1 + exp

(
EF − V (x, z)

kBT

)]
. (5)

The doping concentration ND = N2D/t2D is only non-
zero within the TMD since we only dope the TMD. The
dielectric permittivity ϵ̄(x, z) contains the in-plane and out-
of-plane dielectric constants of the dielectric materials. We
use the expression for the carrier density in a 2D material
to calculate the self-consistent charge density n(x, z), which
depends on the effective mass m∗ and the empirical thickness
t2D of the TMD. We solve the Poisson equation numerically
using the non-linear partial differential equation solver of the
finite-elements-based software package FEniCSx [12], [13].
We set Dirichlet boundary conditions on the metal surfaces to
the value of the Schottky barrier height of 0.3 eV with respect
to the Fermi level. The rest of the boundaries of the simulation
region are considered to be Neumann boundaries.

We only consider the IFBL in the case of an electron within
a homogeneous dielectric making contact with a metal. The
IFBL for an edge contact is then given by [18]

UIFBL(x) = − e2

4πϵ

1

4x
. (6)

Here ϵ is the dielectric constant of the dielectric material and
x is the distance of the charge from the metal. The expression
for the IFBL in the case of the top contact is given as [9]

UIFBL(r, θ) =
−e2

8πϵr

[
1

2
− 2

3
√
3
+

∫ ∞

0

cosh (2αθ)

sinh
(
α 3π

2

) tanh (απ)dα].
(7)

The expression is defined in polar coordinates and describes
the IFBL for an electron near two metal plates at an angle of
3π/2 and the corner at (0,0).

IV. CONCLUSION

In conclusion, we performed quantum transport calculations
to determine the contact resistance in edge- and top-contacted
MoS2 monolayers while taking into account the IFBL of the
Schottky barrier. At low doping concentration, top contacts
exhibit lower contact resistance due to a smaller energy barrier
width and height in the x-direction of the TMD, while at high
doping, edge contacts have lower contact resistance due to
the absence of a vdW gap energy barrier. The top contact
resistance seems to not be affected as much by the addition of
the IFBL at high doping concentrations, which needs further
investigation.
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