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Abstract—We focus on developing a simulation framework for
a graphene-based antenna using finite difference time-domain
(FDTD) method. Based on the FDTD framework, we consider the
propagation of electromagnetic waves in the 2-D space including
graphene plane, where the complex graphene conductivity model
is employed to take into account the presence of graphene
nanoantenna region. In deriving the graphene surface conductiv-
ity, we consider the band structure of graphene starting from the
atomistic tight-binding model, where the conduction and valence
bands meet each other at the K point. In the vicinity of this
point, called Dirac point, the dispersion relation is almost linear.
Based on such linear dispersion relation near the Dirac point, we
calculate the complex graphene surface conductivity in frequency
domain based on Boltzmann equation, which can be utilized
directly within the FDTD framework. The proposed simulation
framework has been successfully worked and we calculated the
current density on the surface of graphene nanoantenna.

I. INTRODUCTION

Since the discovery of isolated and stable graphene films in
2004 [1], graphene has attracted intense attention of the entire
research community [2] due to its extraordinary mechanical,
electronic, and optical properties, which include sufficient
electrical conductivity, high optical transmittance, elevated
Young’s modulus, and thermal conductivity, among others [3],
[4], [5], [6], [7]. As researchers investigate the possibilities
of the applications of graphene materials, ranging from field-
effect transistors to waveguides, electrodes and THz patch
antenna [8], [9], [10], [11], the need for an electromagnetic
simulation tool for graphene-based devices emerges.

Simulating graphene-based devices in time domain has
several advantages. The transient behavior of the device
can be observed and the result for a wide frequency band
can be obtained from a single simulation in time domain.
However, the complicated graphene conductivity model and
the electronic/quantum transport occurring in graphene make
modeling of graphene challenging. This is especially true for
time domain simulations because the graphene conductivity is
frequency dependent. As such, the development of an accurate
and efficient time domain simulation tool for graphene is
important to further study graphene-based devices.

With this motivation, we propose a simulation frame-
work for a graphene-based antenna using finite difference
time-domain (FDTD) method. FDTD method is a rigorous
and powerful tool for modeling nano-scale devices such as
nanoantennas. Based on FDTD framework, we simulate the

propagation of electromagnetic waves in the 2-D simulation
space including graphene plane, where the complex graphene
conductivity model is employed to take into account the
presence of graphene nanoantenna region. When modeling
a graphene nanoantenna, we calculate the complex graphene
surface conductivity (in unit of [S]) based on Boltzmann
equation, which can be utilized directly within the FDTD
framework.

II. MODEL AND METHOD

The finite-difference time-domain (FDTD) method is a
numerical method to solve the time-dependent Maxwell’s
equations (in partial differential form) based on Yee’s work in
1966 [12]. Faraday’s Law and Ampere’s Law are discretized
using central-difference approximations to update the electric
fields E and magnetic fields H in space and time. In [12], the
Yee’s cell of dimension ∆x×∆y×∆z is introduced as a unit
cell of the discretized spatial domain as shown in Fig. 1. The E
fields and H fields are defined in an interlinked way such that
each E nodes are surrounded by 4 H nodes and vice versa,
and the E nodes and H nodes are dislocated by half a cell
spatially. All fields are initially set to zero in the simulation
domain. With a source of excitation, all E fields are updated
at the integer time step n, and H fields are updated at half
time step n+ 1

2 using the E values at time step n. Repeating
this process allows the simulation to march in time.

Fig. 1. Yee’s cell with E and H fields positions in the unit cell. The E fields
and H fields are defined in an interlinked way such that each E nodes are
surrounded by 4 H nodes and vice versa, and the E nodes and H nodes are
dislocated by half a cell spatially.
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Fig. 2. The 2-D simulation domain has been discretized into 100 × 100
lattice points in the xy plane.

When simulating a transverse electric (TE) wave propaga-
tion, the 2-D simulation domain has been discretized into 100
× 100 lattice points in the xy plane as Fig. 2 shows. In the
TE mode, the electric field is transverse to the direction of
propagation while the magnetic field is normal to the direction
of propagation. Based on FDTD method, electric components
Ex, Ey and magnetic component Hz are calculated in the xy-
plane as
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Here the constant C can be calculated by using the permit-
tivity ϵ and permeability µ of a medium, the spatial mesh ∆x
and ∆y, and the value of timestep ∆t. We can determine the
value of timestep ∆t from the following Courant condition

c∆t ≤ 1√(
1

∆x

)2

+

(
1

∆y

)2
, (4)

where c is the speed of light.
In deriving the graphene surface conductivity, we consider

the band structure of graphene starting from the atomistic
tight-binding model. Atomistic tight-binding model is an ap-
proach to the calculation of electronic band structure using an

Fig. 3. The arrangement of Ex, Ey and Hz nodes in the 2-D unit cell in
the TE mode. Each H nodes are surrounded by four E nodes, while E nodes
are located at the center of the two adjacent H nodes.

approximate set of wave functions based upon superposition
of wave functions for isolated atoms located at each atomic
site. As shown in Fig. 4 (right), in derived band structure of
graphene, the conduction and valence bands meet each other
at K point, which is like a zero band gap semiconductor [13].
The six points in the two dimensional Brillouin zone where
the bands meet are called Dirac points. In the vicinity of these
points, the dispersion relation is almost linear and described
as ϵ(k) = ±ℏvF k, where ℏ is the reduced Planck’s constant,
vF is the Fermi velocity, and k is the wavenumber in m−1.

Fig. 4. (left) Energy band structure of graphene. The conduction and valence
bands meet each other at K point. (right) In the vicinity of K point, the
dispersion relation is almost linear, where ϵ(k) = ±ℏvF k.

Based on such linear dispersion relation near the Dirac point
and by restricting our focus only on the intraband contribution
(thus neglecting interband contribution), we calculate the com-
plex graphene surface conductivity in frequency domain based
on Boltzmann equation. The Boltzmann equation describes the
statistical behavior of a thermodynamic system not in a state
of equilibrium. In following equation, EF is the Fermi energy.
ω is the angular frequency in radians and τscat is the scattering
rate in seconds. Also, T is the temperature in Kelvin, −e is the
electron charge, ℏ is the reduced Planck’s constant, and kB is
the Boltzmann constant. In the case of homogeneous systems,
the distribution function fj (k, t) for the jth band (j = 1
and j = 2 are valence and conduction band, respectively)
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is determined by the Boltzmann equation

∂fj (k, t)

∂t
=

∂fj (k, t)

∂kx

(
−qE

ℏ

)
+ Pj (k) , (1)

where the scattering term Pj (k) is given within the relaxation
time approximation as

Pj (k) = −
fj (k, t)− f

(eq)
j (k, t)

τscat
. (2)

Here we have assumed that the electric field along the x
direction. By making use of the dispersion relation of graphene
εj (k) = ℏvF

√
k2x + k2y , kx derivative of the distribution

function fj (k, t) can be calculated as

∂fj (k, t)

∂kx
=

∂fj (k (ε) , t)

∂ε

∂εj (k)

∂kx
(3)

= sjℏvF cos θk
∂fj (k (ε) , t)

∂ε
,

where sj=1 = −1 for valence band and sj=2 = 1 for conduc-
tion band. Then the distribution function can be analytically
obtained as

fj (k, ω) = sjℏvF cos θk

(
−qE (ω)

ℏ

)
(4)

×
∂f

(eq)
j (k (ε))

∂ε

1(
−iω + 1

τscat

)
The x-directional current is then calculated as

Jx =
2valley2spinq

S

∑
j=C,V

vF
∑
k

cos θkfj (k) (5)

= σ (ω)E (ω) ,

where by replacing the summation over k by the integration
we can finally obtain the conductivity

σ(ω) =
e2

πℏ2
[
EF + 2kBT log(1 + e−βEF )

] 1(
−iω +

1

τscat

) .

(5)

Taking the parameters used in [14] as an example, T = 300
K, EF = 0.5 eV and τscat = 1.0×10−12 s, the corresponding
conductivity values are shown in Fig. 5. The solid line shows
the real value of graphene conductivity, whereas the dashed
line shows the imaginary value. We can confirm that the real
value dominates over imaginary value in the low frequency.
Therefore, the imaginary value of conductivity can be ignored
for simulations below 30 GHz (The maximum frequency of
5G wireless communication).

When modeling a graphene nanoantenna, we use the real
value of graphene surface conductivity (in unit of [S]). In the
2-D simulation domain, a cross section of the antenna is taken
in the xy plane. As shown in Fig. 6, the width of the antenna is
assumed to be infinite in the z− direction. The length L is in
the y− direction and the thickness t is in the x− direction. The
spatial mesh is ∆x = ∆y = 2.5×10−4 m. Using this mesh, a

Fig. 5. The graphene surface conductivity (in unit of [S]) in frequency domain.
We can see that the real value dominates over imaginary value in the low
frequency.

L = 5.0× 10−3 m graphene patch antenna is modeled by 20
cells along the y− direction. The source excitation is a sine
wave with a frequency of 30 GHz at the center of simulation
domain, exciting a point wave with Ey polarization, incident
onto the graphene antenna.

Fig. 6. The 2-D simulation domain is 0.025 m × 0.025 m square and has been
discretized into 100 × 100 lattice points in the xy plane. Therefore, the spatial
mesh is ∆x = ∆y = 2.5×10−4 m. Using this mesh, a L = 5.0×10−3 m
graphene patch antenna is modeled by 20 cells along the y− direction. The
source excitation is a sine wave with a frequency of 30 GHz at the center of
simulation domain, exciting a point wave with Ey polarization, incident onto
the graphene antenna.

III. RESULTS

In Fig 7, we show the temporal response of electric compo-
nent Ey in time of t = 25∆t, 50∆t, 75∆t, 100∆t respectively.
As shown in these figures. The proposed simulation framework
has been successfully worked and excited sine waves are
propagated smoothly in the 2-D simulation domain. We can
confirm that the graphene antenna is placed at x = 0.020 m
and 0.010 m ≤ y ≤ 0.015 m, where the incident waves are
reflected and diffracted.

In Fig 8, we show the temporal response of magnetic
component Hz in time of t = 25∆t, 50∆t, 75∆t, 100∆t
respectively. We have excited a wave source only in E fields,
but magnetic waves in H fields have been generated and
propagated in the 2-D simulation domain. This is one of the
typical characteristics of electromagnetic waves: varying the
electric field gives rise to a time-varying magnetic field which
in turn produces a time-varying electric field.
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Fig. 7. The temporal response of electric component Ey in time of t =
25∆t, 50∆t, 75∆t, 100∆t respectively. The source excitation is a point sine
wave with a frequency of 30 GHz at the center of simulation domain, exciting
a spherical wave with Ey polarization. We can see that the graphene antenna
is placed at x = 0.020 m and 0.010 m ≤ y ≤ 0.015 m, where the incident
waves are reflected and diffracted.

From the results of electric component Ey in Fig. 7, we
have calculated the current density along the graphene antenna
region (x = 0.020 m and 0.010 m ≤ y ≤ 0.015 m).
In Fig. 9, We show the comparison of the current density
(in unit of Am−1) calculated from the real and imaginary
conductivity of graphene given from Eq. (5) in time of
t = 25∆t, 50∆t, 75∆t, 100∆t respectively.

IV. CONCLUSION

We proposed a simulation framework of graphene nanoan-
tenna based on Boltzmann equation and finite difference time-
domain (FDTD) method. We have simulated transverse electric
(TE) wave propagation and calculated the temporal response
of electric component Ey and magnetic component Hz in
time of t = 0, 10∆t, 50∆t, 100∆t respectively. The proposed
simulation framework has been successfully worked and the
excited electromagnetic waves are propagated smoothly in the
2-D simulation domain. Also, we can confirm that the modeled

Fig. 8. The temporal response of magnetic component Hz in time of
t = 25∆t, 50∆t, 75∆t, 100∆t respectively. We have excited a wave source
only in E fields, but magnetic waves in H fields have been generated and
propagated in the 2-D simulation domain.

Fig. 9.

graphene nanoantenna is functioned properly. On the surface
of the antenna, the incident waves are reflected and diffracted.
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