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Abstract—We present results obtained from solving the drift-
diffusion equations for spin transport with the finite element
method in a ferromagnet/heavy metal/ferromagnet (FM/HM/FM)
trilayer, using boundary conditions which account for partial
absorption of spins at the HM/FM interfaces. We demonstrate
the flexibility of the approach by treating different levels of
absorption, and by showing that in the limit of full absorption,
the results obtained with the boundary conditions agree with the
ones obtained from magnetoelectronic circuit theory.

Index Terms—Spin drift-diffusion, Spintronics, SOT-MRAM

I. INTRODUCTION

Spintronics is a rapidly evolving field that has yielded
several promising applications in data storage, sensors, quan-
tum computing, and logic devices [1]. One such application
is spin-orbit torque magnetoresistive random access memory
(SOT-MRAM), which takes advantage of the strong spin-orbit
coupling in heavy metal (HM) layers to generate spin currents
from charge currents, enabling effective manipulation of the
magnetization in adjacent ferromagnetic (FM) layers through
SOTs [2].

To aid the development of these devices, efficient models
which can realistically capture the spin transport at HM/FM
interfaces in multilayer structures are required. A commonly
used approach for the boundary conditions is based on mag-
netoelectronic circuit theory (MCT) [3]–[5], which relates
the transverse spin current at the interface to the experi-
mentally measurable spin-mixing conductance G↑↓. However,
this model assumes complete absorption of the transverse
spin current at the interface, disregarding spin precession and
dephasing effects inside the FM. In this work, we explore the
use of boundary conditions which treat partial absorption at
the interface, by allowing a transmission mixing conductance
Γ↑↓ [6], such that the spin transport inside thin FM layers can
be properly captured.

In Section II we present the spin current boundary con-
ditions obtained from considering spin-dependent scattering
from a magnetic interface. The interface model is simple,
however, it captures the core effects of spin-dependent in-
terface scattering, and leaves room for further extension by
considering more realistic interfaces and including interfacial
spin-orbit coupling, enabling modeling of the Rashba effect
[7]. In Section III we present the spin drift-diffusion model
which we consider for computing the spin transport and

torques in multilayers, and how the boundary conditions are
implemented through an effective interface layer. In Section
IV we show numerical results for a FM/HM/FM trilayer
structure relevant for modern SOT-devices [8], and compare
our approach with results of MCT and the assumption of a
continuous spin accumulation and current across the interface
[5], [9].

II. BOUNDARY CONDITIONS FOR HM/FM INTERFACES

We consider an HM/FM interface at z = 0 with the HM
layer below (z < 0) and the FM layer above (z > 0)
the interface. We model the interface by assuming a spin-
dependent delta potential at the interface [4]:

V (r) =
ℏ2kF
me

δ(z) (u0I2×2 + uexσ ·m) (1)

u0 and uex are the unitless magnitudes of the spin-independent
part of the potential and the exchange interaction at the
interface, respectively. ℏ is the reduced Planck constant, me is
the electron mass, and kF is the Fermi wave number. The
vector σ contains the Pauli matricies, I2×2 is the 2 × 2
identity matrix, and δ(z) is the Dirac delta function. We
consider the scattering of a non-equilibrium Boltzmann density
function for spin and charge gIα(z,k) incident on the interface,
where α ∈ {x, y, z, c} and k is the wave vector. The indices
x, y, z denote the spin polarization density along the Cartesian
axes, and c denotes the charge density. By assuming a free
electron gas on either side of the interface, and enforcing
the continuity of the wave function and probability current,
Boltzmann scattering matrices for reflection and transmission
Rαβ and Tαβ , respectively, can be derived [10].

Following the same derivation procedure as for the drift-
diffusion equations, we obtain the spin and charge currents
above (0+) and below (0−) the interface by integrating the
incident and scattered distribution functions over the Fermi
surface [10]:

jz(0
±) = ∓ e

ℏ(2π)3

∫
FS

dk
kz
kF

×
[
(I −R(k))gI(0±,k)− T (k)gI(0∓,k)

]
(2)

jz = [jsz, jcz]
T is a vector containing the spin and charge

currents along z, jsz and jcz , respectively, in units of A/m2.
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e is the elementary charge, kz is the z-component of the wave
vector, and I is the 4× 4 identity matrix.

We assume that the incoming out-of-plane spin currents
behave as if they originate from spin-dependent reservoirs,
which implies

gI(0±,k) = eµ(0±), (3)

where µ is the spin and charge chemical potential vector in
units of V [3], [7]. The integration can then be performed
over the scattering matrices to obtain conductance tensors for
reflection and transmission given by

G =
e2

ℏ(2π)3

∫
FS

dk
kz
kF

(I −R(k)) (4)

and
Γ =

e2

ℏ(2π)3

∫
FS

dk
kz
kF

T (k), (5)

respectively, containing computed mixing-conductances.
We can then express the difference and average of the

currents across the interface, in terms the tensors ∆G = G−Γ
and G = (G + Γ)/2, respectively. Separating the spin and
charge currents we obtain

∆Jsz = 2∆Gssµs Jsz = Gss∆µs +Gsc∆µc (6)

∆jcz = 0 jcz = Gcc∆µc +Gcs ·∆µs, (7)

where ∆µα = µα(0
−) − µα(0

+) and µα = [µα(0
−) +

µα(0
+)]/2. The conductance vector Gsc (Gcs) couples the

drop in spin (charge) chemical potential to the average charge
(spin) current. A factor of 2µB/e has been included into the
spin tensors ∆Gss, Gss and Gsc to convert the spin current
into units of A/s, where µB is the Bohr magneton.

Without spin-orbit coupling at the interface the spin torque
acting on the magnetization at the interface is given by the
difference in transversal spin current across the interface:
Tint

s = ∆J⊥
sz, where ⊥ denotes the transverse components.

The results from MCT are obtained by enforcing J⊥
sz(0

+) = 0
and µ⊥

s (0+) = 0. The spin torque acting on the FM is
then fully described by the transverse spin current at the HM
side of the interface: Ttot

s = J⊥
sz(0

−). The computed SOTs
can be included into micro-magnetic models based on the
Landau–Lifshitz–Gilbert (LLG) equation to describe the mag-
netization dynamics during the operation of SOT devices [5],
[9], [11]. The resulting spin torques can be decomposed into
a damping-like and field-like component with the direction
d̂ = m×(p̂×m) and f̂ = m×p̂, respectively, where m is the
normalized magnetization and p̂ is the polarization direction
of the spin currents generated in the bulk. The names refer to
the terms in the LLG equation, which describe prescession of
the magnetization around an effective field and the damping
towards it.

Equation (6) and (7) can be used to fully describe the
currents and torques across the interface. However, with the
inclusion of spin-orbit coupling at the interface, additional
currents are generated and losses of spin angular momentum
to the lattice occur at the interface. In this case a modification
and expansion of the boundary conditions is required [7], [12],
which is outside the scope of this work.

III. SPIN DRIFT-DIFFUSION

We model the spin dynamics in FM multilayers by solving
the equation of motion for the non-equilibrium spin accumu-
lation S [5], [9].

∂S

∂t
= −∇Js −De

(
S

λ2
sf

+
S×m

λ2
J

+
m× (S×m)

λ2
ϕ

)
(8)

(JS)ij is the spin current tensor in units of A/s, describing the
flow of spin polarization i in direction j, m is the normalized
magnetization, and De is the electron diffusion constant. λsf ,
λJ , and λϕ are the spin-flip, exchange, and dephasing lengths,
respectively. Since magnetization dynamics happen at a much
shorter time scale than spin dynamics, we solve (8) for a
steady state ∂S/∂t = 0. The term containing λϕ describes
the length scale over which the transverse spin components
decay in a magnetic region, while λJ describes the length scale
over which the transverse spin components precess around the
magnetization direction.

The spin current contains several contributions such as the
diffusion of spin accumulation, polarization of charge current
by the magnetization of FM layers, and the spin Hall effect
in HM layers [5], [9]:

Js = −µB

e
βσm⊗

(
JC − βDDe

e

µB

[
(∇S)Tm

])
−De∇S− θSHA

µB

e
εJC (9)

βσ and βD are the conductivity and diffusion polarization
parameters, respectively, and θSHA is the spin Hall angle. ε is
the Levi-Civita tensor, and ⊗ denotes the outer product. For
external boundaries not containing an electrode we enforce the
condition Jsn = 0. The spin torques inside the FM are related
to the flux of transverse spin current and are given by [4], [5]:

Ts = −De
S×m

λ2
J

−De
m× (m× S)

λ2
ϕ

(10)

To capture the discontinuities across the interface using
the standard finite element method (FEM), which imposes a
continuous solution, we treat the interface as a thin layer with
a finite thickness d. The drop in current across the thin layer
can then be expressed as

∆Jsz =

∫ d/2

−d/2

dz
∂Jsz

∂z
≈ 2∆Gss

d

∫ d/2

−d/2

dzµs, (11)

where the mean value theorem for integrals was used to
approximate the average spin chemical potential across the
interface µs in (6). Removing the integrals from (11) yields
the following expression for the partial derivative of the spin
current inside the interface layer:

∂Jsz

∂z
≈ 2∆Gss

d
µs (12)

We express the currents in the interface layer in terms of the
average ones, and rewrite the spin current in the interface layer
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Fig. 1. (a) A FM(4 nm)/HM(4 nm)/FM(4 nm) trilayer oriented along
the z-axis, with a constant charge current density along the x-axis. The
magnetization of the upper and lower FM is oriented along the z-axis and
the x-axis, respectively. (b) The solution of the spin accumulation. The arrows
show the orientation of the local spin polarization, while the color bar denotes
the magnitude of the y-component.

in terms of charge current by expressing the drop in charge
potential ∆µc in (6) with (7), yielding

Jsz ≈ d

[
Gss −

Gsc ⊗Gcs

Gcc

]
∂µs

∂z
+ jcz

Gsc

Gcc

, (13)

where the partial derivative was obtained from the finite
difference approximation for the drop in the spin chemical
potential ∆µs in (6).

In order to solve partial differential equations with the
FEM, the original equations have to be converted to a weak
form. The weak formulation of (8) and (9) is given by
[11]. Following the same steps, the weak formulation for the
equations in the interface layer is given by∫

Ωint

d

[
Gss −

Gsc ⊗Gcs

Gcc

]
eDe

µBσ

∂S

∂z
· ∂zv dx

+

∫
Ωint

2∆Gss

d

eDe

µBσ
S · v dx =

∫
Ωint

jcz
Gcs

Gcc

· v dx, (14)

where the spin chemical potential has been expressed in
terms of the spin accumulation with the identity µs =
(e/µB)(De/σ)S [5], σ is the electrical conductivity, and v
is the test function. To obtain the conductance tensors, the
scattering matrices R and T are computed analytically [10],
and the integrals in (4) and (5) are computed numerically using
a standard quadrature scheme for spherical integrals.

IV. RESULTS & DISCUSSION

We solve (8) and (9) on a mesh of the trilayer structure,
depicted in Fig. 1(a). We treat the first layer of elements
on the FM sides of the boundaries as the effective interface
layers, where we solve (12) and (13). The results for the
MCT approximation were obtained by setting the elements
of (5) corresponding to the transmission conductance to zero,
and having a vanishing λϕ inside the FM. A constant charge
current density of 5×1012A/m2 with the parameters displayed
in Tab. I was used to obtain the solution. For the boundary
conditions the values u0 = 0.42645, uex = 0.20055 and
kF = 25.4 nm−1, were used. Fig. 1(b) shows the three-
dimensional solution of the spin accumulation in the trilayer

Fig. 2. The solution for the spin accumulation along the z-axis in the center
of the trilayer shown in Fig. 1. Panels (a)-(b) and (c)-(d) show the x- and
y-components, respectively. Panels (a) and (c) show the results obtained
using the boundary conditions, while panels (b) and (d) show the results
obtained by treating the currents and accumulations as continuous over the
HM/FM interfaces. The dashed lines show results obtain using MCT boundary
conditions.

structure, where the spin accumulation generated by the spin
Hall effect can be seen in the HM layer.

Fig. 2 shows the solution of the spin accumulation obtained
using the boundary conditions or by treating the spin current
and accumulation as being continuous across the interface.
We observe, that the accumulations obtained by allowing
transverse spin currents in FM layers agree with the results
of MCT inside the HM layers while allowing for non-zero
components inside the FM layers. The x-component corre-
sponding to the field-like direction is shown to increase with
increasing spin current penetration. Furthermore, it is shown
that the boundary conditions recover the results obtained with
MCT for vanishing λϕ, while in the continuous case, they lead
to an under- and overestimation of the spin accumulation.

Fig. 3 displays the average spin torque acting on the
upper FM. We observe that the boundary conditions produce
results which agree well with the results of MCT, except for
the considerable increase of the magnitude of the field-like
component, consistent with the increase of spin accumulation.
For deeply penetrating spin currents (λϕ > dFM ), we observe
an up to 6× increase in the field-like torque. For the continuous
case the resulting torques have a much stronger dependence
on the spin penetration, however, depending on the thickness
and choice of λϕ, the torques obtained with MCT can be
reproduced.

Fig. 4 shows the dependence of the average spin torque on
λϕ, where for λϕ → 0 the torques from MCT are reproduced.
Increasing λϕ results in a minor reduction of the damping-
like torque and a 4× increase of the field-like torque. In
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TABLE I
MATERIAL PARAMETERS

Material ↓ / Parameter→ De [10−3m2/s] σ [MS/m] βσ [1] βD [1] λsf [nm] λJ [nm] θSHA [1]

FM 1 7 0.42 0.42 42 2.0 -
HM 1.1 7 - - 1.4 - 0.19

Fig. 3. The average spin torque acting on the magnetization of the upper FM
layer, shown in Fig. 1, as a function of the upper FM thickness dFM. Panels
(a)-(b) and (c)-(d) show the damping-like and field-like components of the
torque, respectively.

Fig. 4. The average spin torque acting on the magnetization of the upper
FM(4 nm) layer, shown in Fig. 1, as a function of the spin dephasing
length λϕ. Panels (a)-(b) and (c)-(d) show the damping-like and field-like
components of the torque, respectively.

the continuous case we observe that decreasing λϕ leads to
a vanishing field-like torque and over-estimated damping-like
torque. Decreasing λJ reduces the torque as spin precession
occurs more frequently throughout the FM.

V. CONCLUSION

We demonstrate, that in thin film FM and HM multilayer
structures, where transverse spin currents are not fully ab-
sorbed, boundary conditions based on quantum mechanical
scattering, which can treat partial absorption of spins through
HM/FM interfaces, are necessary to properly model the spin
transport and torque.

To further investigate spin torques in trilayer structures, the
approach can be extended to account for the strong spin-orbit
coupling at HM/FM interfaces, which is responsible for the
Rashba-Edelstein effect [10].
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