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Abstract—Spin-qubit-based quantum computing technologies
commonly involve quantum point contacts (QPCs). Indeed, the
conductance quantization exhibited by QPCs may be harnessed
for the sensing of the charge in a quantum dot (QD) which
may, in turn, be harnessed for spin-qubit characterization and
readout. In this work, we report a self-consistent finite-element
method (FEM) simulation scheme for QD charge sensing by
a QPC in planar semiconductor heterostructures. This scheme
fully accounts for the electrostatics, quantum confinement, and
quantum transport phenomena that are relevant in semicon-
ductor quantum wells (QWs). Robust sub-Kelvin convergence
is achieved partly thanks to an adaptive meshing algorithm
for Poisson’s equation and partly thanks to the uncertainty
principle, which leads to diffuse charge density profiles. To min-
imize computational burden, we leverage the quasi-separability
of the Schrödinger equation in the QW, turning a 3D problem
into a set of 1D problems; furthermore, we leverage the sub-
Kelvin temperature to reduce the calculation of the QPC’s
conductance to a single Green’s function evaluation. Finally,
we report: (A) simulations of the hole density in an AlGaAs–
GaAs QW accurately matching experimental data and (B)
charge sensing in simulations of realistic QD and QPC devices,
thereby demonstrating our simulation scheme’s relevance to the
modeling of spin qubit technologies.

Index Terms—Finite-element method (FEM), technology
computer-aided design (TCAD), nonequilibrium Green’s func-
tion (NEGF) formalism, sub-Kelvin temperature, quantum com-
puting, spin qubit, quantum dot, quantum point contact (QPC).

I. INTRODUCTION

A quantum point contact (QPC) is a narrow constriction
between two electrical conductors. Since the width of this
constriction is on the order of the wavelength of charge
carriers, QPCs exhibit conductance quantization [1], [2]. As
a result, they can be used as charge detectors with sensitivity
on the order of the elementary charge. For example, a
QPC can be gated by an electron or hole confined within
a neighboring quantum dot (QD). In systems with spin-
to-charge conversion, QPCs can thus be used for readout
of spin qubits [3]. More generally, QPCs can be used to
characterize spin qubits [4]. To achieve practical simulations
of a QPC gated by a QD, several elements are required:
(A) the modeling of quantum confinement in the QD and
QPC and its impact on charge transport, (B) the modeling of
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electrostatics, in particular the gating of the QPC by the QD,
(C) robust convergence at sub-Kelvin temperature, a regime
in which QD and QPC are typically operated for quantum-
computing applications, and (D) low computational burden,
due to the extreme sensitivity of the QPC’s conductance on
device geometry, material composition, and external volt-
ages, which demands parameter fine-tuning to achieve charge
sensing capability. In this work, we present a simulation
framework satisfying these requirements implemented in the
finite-element method (FEM) software package QTCAD®

(Quantum Technology Computer-Aided Design) [5]–[8].

II. DEVICE STRUCTURE

As a vehicle to this study, we consider the experimental
device described in Ref. [4]. It consists of a two-dimensional
hole gas (2DHG) formed within a quantum well (QW)
across an Al0.5Ga0.5As–GaAs heterojunction [Fig. 1]; holes
in GaAs are a promising platform for spin qubits due to their
low coupling to nuclear spins, which is expected to lead to
long coherence time [9], [10]. The heterojunction is undoped;
electrically-stable nanostructures are typically difficult to
fabricate in p-doped AlGaAs–GaAs heterostructures [11]. To
attract holes within the QW, a large negative voltage VTG is
applied on the Al global top gate. 3D (2D) confinement is
achieved in the QD (QPC) by applying voltages > VTG on
the Ti/Au gates located on the Al2O3–Al0.5Ga0.5As interface
[Fig. 2(a)]. For simulation purposes, the Al and Ti/Au gates
are taken to have infinitesimal thickness; the GaAs layer
is taken to be sufficiently thick so as to have vanishing
displacement field on its bottom surface.

III. QUANTUM-WELL SOLVER

The only charges in the device are holes confined within
the QD and the rest of the QW. They are modeled within a
four-band Luttinger–Kohn–Foreman k · p model [12], [13],
in which the time-independent Schrödinger equation is

[
ℏ2

2
kT ·D · k + V (r)

]
F (r) = EF (r) , (1)

where ℏ is the reduced Planck constant, k = −i∇ =
(kx, ky, kz) is the crystal momentum, D is a generalization
of the effective mass tensor which captures inter-band inter-
actions and the discontinuity of the bandstructure along the
heterostructure growth axis, r = (x, y, z) is the position,
F (r) is the four-band envelope function, and E is its
eigenenergy. Note that the elements of D may be written
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Fig. 1. Diagram of the heterostructure of the simulated device. The regions
labeled by 1–3 (4) are Ti/Au gates used to achieve 3D (2D) confinement in
the QD (QPC). (Not to scale.)

Fig. 2. Cross sections of the calculated electric potential on (a) the Al2O3–
Al0.5Ga0.5As interface, which highlights the layout of the Ti/Au gates
used to achieve 3D (2D) confinement to form the QD (QPC), and (b) the
Al0.5Ga0.5As–GaAs interface, which highlights the potential experienced
by holes in the QW. The external voltages are compatible with the harboring
of two holes by the QD and charge sensing by the QPC.

as Dαβ
nm, where α, β index the three Cartesian directions of

momentum space and n,m index the four bands. Finally,
V (r) is the potential energy for holes:

V (r) = q [φ(r)− φF] + χ(r) + Eg(r) , (2)

where q > 0 is the elementary charge, φ(r) is the electric
potential, φF is a reference potential, Eg(r) is the bandgap
energy, and χ(r) is the electron affinity. The electric potential
is obtained by solving Poisson’s equation:

∇ · [ε(r)∇φ(r)] = −qp(r) , (3)

where ε(r) is the permittivity and p(r) is the hole density.
In the QD, holes are 3D-confined, so that the hole density

is given by

pQD(r) =
∑

n,i

|Fn,i(r)|2
1

1 + e
Ei−EF

kBT

, (4)

where n is the band index, i indexes the bound states
of the QD with four-band envelope functions Fi(r) and
eigenenergies Ei, EF is the Fermi level (set to be EF = 0
in this work), kB is the Boltzmann constant, and T is the
temperature. Note that, for simplicity, hole–hole Coulomb
interactions were ignored in Eq. (4).

Elsewhere in the QW, the calculation of the 3D hole
density may be simplified to a set of 1D problems in the
confinement direction z under the assumption of “quasi-
separability”, which requires that (A) V (r) ≈ Vxy(x, y) +
Vz(z) and (B) Dαβ

nm = 0 for all n ̸= m. Condition (A)
is justified by the much stronger confinement along z than
along x and y. Condition (B) is formally false due to off-
diagonal elements of the D tensor coupling kz to kx and
ky . However, a perturbation theory analysis indicated that
these elements induce corrections to the hole density of
at most ≈ 5% compared to a calculation involving the
diagonal elements of D only; we thus ignore these off-
diagonal elements. Therefore, for each position (x, y), we
solve a 1D Schrödinger equation:

[
ℏ2

2
kzD̃kz + V (x,y)(z)− E(x,y)

]
f (x,y)(z) = 0 , (5)

where the elements of D̃ are given by D̃nm = Dzz
nmδnm, δnm

is a Kronecker delta, V (x,y)(z) is the interpolation of V (r)
on a linecut parallel to the z axis crossing the QW at position
(x, y), f (x,y)(z) is the 1D four-band envelope function, and
E(x,y) is its eigenenergy. Since D̃ is diagonal, Eq. (5) is
an effective-mass approximation. Figure 4(b) illustrates the
solution to such a 1D Schrödinger equation. Having solved
the 1D Schrödinger equations, under the assumption of quasi-
separability, we can express the QW hole density on a given
linecut (x, y) as

p
(x,y)
QW (z) =

∑

n,j

∣∣∣f (x,y)
n,j (z)

∣∣∣
2 m⋆

nkBT

2πℏ2
ln

[
1 + eη

(x,y)
n,j

]
, (6)

η
(x,y)
n,j =

(
EF − E

(x,y)
n,j

)
/(kBT ) , (7)

where m⋆
n is the 2D density-of-states effective mass for band

n (which may be computed from the elements of D̃) and j
indexes the eigenstates of Eq. (5).

We calculate the hole density p
(x,y)
QW (z) on sufficiently

many linecuts (x, y) and then linearly interpolate the re-
sults to find the QW hole density pQW(r) for any r.
Through careful optimization, the interpolations involved in
this QW solver algorithm, namely (A) the interpolations
from the 3D device mesh to the set of 1D linecut meshes
(i.e. V (r) → V (x,y)(z)), and (B) the interpolation from
the set of 1D linecut meshes to the 3D device mesh (i.e.
p
(x,y)
QW (z) → pQW(r)), can both be calculated in O(N)

time, where N is the number of nodes on the target mesh.
In our QW solver simulations, the 3D device mesh has
≈ 1.6× 106 nodes, the 1D Schrödinger equations are solved
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over ≈ 5.2×103 linecuts, and each 1D linecut mesh has 351
nodes. Finally, the total hole density is obtained through the
sum p(r) = pQD(r) + pQW(r); see Fig. 3 for the total hole
density in the QW of the device investigated in this paper
and Fig. 2(b) for the corresponding electric potential.

Fig. 3. Cross section of the calculated hole density on the Al0.5Ga0.5As–
GaAs interface. The external voltages are compatible with the harboring of
two holes by the QD and charge sensing by the QPC.

IV. SUB-KELVIN ROBUSTNESS

Note that the Poisson equation [Eq. (3)] and the QW
hole density equation [Eq. (6)] (which is based on the
Schrödinger equation) are coupled. They are thus solved
iteratively until self-consistency is reached. The Schrödinger–
Poisson iteration’s initial guess is taken to be the solution to
a classical nonlinear Poisson equation within the Thomas–
Fermi approximation. Such equations are notoriously dif-
ficult to solve iteratively at cryogenic T , notably due to
the “sharpness” of classical charge density profiles, which
is exacerbated in the sub-Kelvin regime; see Fig. 4(a) and
Refs. [14]–[16]. To resolve this issue, in a previous work, we
demonstrated an adaptive meshing algorithm for the classical
nonlinear Poisson equation, thereby enabling convergence
down to sub-Kelvin temperatures [6]. Alternatively, if avail-
able, the initial guess is taken to be the solution to the
coupled Schrödinger–Poisson equations for the same device
at similar external voltages. The subsequent Schrödinger–
Poisson iterations pose little convergence difficulties thanks
to the uncertainty principle, which leads to more “diffuse”
charge density profiles [Fig. 4(b)]. Note that except for the
data of Fig. 5, throughout this work, we set T = 100 mK.
With an initial guess based on the classical nonlinear Poisson
equation, the Schrödinger–Poisson iterations converged in
around 2.6 hours on a 64-core processor, despite our very
dense meshes [Sec. III]; with an initial guess based on the
QW solver, they converged around 7 times faster.

V. COMPARISON WITH EXPERIMENTAL DATA

To calibrate our simulation parameters, we compare hole
density calculations based on Eq. (6) to Hall resistivity
measurements [17] in a bulk Al2O3–Al0.5Ga0.5As–GaAs
heterostructure. We find that our simulations exhibit excellent
agreement with experimental data [Fig. 5] provided that we
use the experimental values of relative permittivity for Al2O3

and Al0.5Ga0.5As quoted in Ref. [17] (7.2 and 11.5, respec-
tively) and set the Al workfunction to 4.98 eV. Alternatively,
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Fig. 4. Potential energy and hole density profiles in the heterostructure of
Fig. 1, except without the Ti/Au gates, as obtained via simulations based on
(a) the classical nonlinear Poisson equation and (b) the Schrödinger–Poisson
equations.

the Al workfunction could have been set to a value closer
to experimental data (≈ 4.2 eV [18]) while introducing a
negative sheet charge trapped in the Al2O3 layer.
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Fig. 5. 2DHG sheet charge density as a function of global top gate voltage
for the same heterostructure as in Fig. 1, except without the Ti/Au gates,
with an oxide thickness of 244 nm, and with an Al0.5Ga0.5As thickness of
100 nm, at T = 4 K. The experimental data are taken from Fig. 1(c) of
Ref. [17] while simulations are based on Sec. III.

VI. NEGF CONDUCTANCE AND CHARGE SENSING

At equilibrium (i.e. when the source–drain voltage is 0), in
the T → 0 limit, the energy window for quantum transport
through the QPC is limited to EF. This applies to the sub-
Kelvin regime we are investigating; we may thus compute
the QPC conductance through

G =
q2

h
T (E = EF) , (8)
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where h = 2πℏ and T (E) is the transmission function in the
two-probe system composed of the source, QPC constriction,
and drain shown in Fig. 2(a). We compute T (E) using the
nonequilibrium Green’s function (NEGF) formalism assum-
ing coherent transport [1], [19], [20], so that

T (E) = Tr
[
ΓDGRΓSGA

]
, (9)

where ΓS,D is the source/drain broadening function and
GR =

(
GA

)†
is the retarded Green’s function. This formalism

naturally accounts for the 2D confinement and quantum in-
terferences that arise in the QPC. Importantly, the calculation
of G through Eq. (8) only requires a single NEGF evaluation.

Figure 6 shows the calculated QPC conductance as a
function of QPC gate voltage VQPC. As expected, the QPC
exhibits conductance quantization. G transitions from 0 to
2q2/h around VQPC = 2.24 V; as such, this particular
value of VQPC is well-suited to operate the QPC as a QD
charge sensor. To demonstrate this, we compute the 3D-
bound hole density in the QD using Eqs. (1) and (4) and
find the QD holds a total charge of 2q [see Fig. 3]. Solving
Poisson’s equation [Eq. (3)], we find that this QD charge
slightly increases the potential energy in the QPC channel
[Eq. (2)], thereby reducing its number of conduction modes.
Correspondingly, introducing a charge in the QD reduces
G from ≈ 0.97q2/h to ∼ 0.74q2/h (see arrow in Fig. 6),
thereby demonstrating the QPC’s charge sensing capability.
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Fig. 6. Calculated QPC conductance–voltage characteristic with and without
charge in the neighboring QD.

VII. CONCLUSION

We have demonstrated a simulation methodology for two
ubiquitous quantum computing devices, namely the QDs and
QPCs that may be found in semiconductor heterojunction
QWs, and applied it to an experimental, undoped, hole-
majority quantum device. By capitalizing on the quasi-
separability of the Schrödinger equation in the QW and the
narrow energy window for quantum transport, we kept com-
putational burden to a minimum. Finally, through adaptive
meshing and the uncertainty principle, we achieved robust
simulation convergence, even in the sub-Kelvin regime.
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