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A B S T R A C T   

In this paper, two methodologies are used to speed up the maximization of the breakdown voltage (BV) of a 
vertical GaN diode that has a theoretical maximum BV of ~ 2100 V. Firstly, we demonstrated a 5X faster accurate 
simulation method in Technology Computer-Aided-Design (TCAD). This allows us to find 50 % more numbers of 
high BV (>1400 V) designs at a given simulation time. Secondly, a machine learning (ML) model is developed 
using TCAD-generated data and used as a surrogate model for differential evolution optimization. It can inversely 
design an out-of-the-training-range structure with BV as high as 1887 V (89 % of the ideal case) compared to ~ 
1100 V designed with human domain expertise.   

1. Introduction 

GaN is becoming a mainstream semiconductor for RF and power 
applications, with total market size of over $1 billion [1]. Vertical GaN 
devices, such as vertical GaN diodes, have been widely regarded as one 
of the most promising candidates for next-generation higher-voltage, 
high-power applications [2,3]. Due to its wide bandgap (3.4 eV), the 
breakdown field of GaN is 10 times higher than that of Si. A GaN diode is 
expected to have>1450 times better Baliga’s Figure-of-Merit than Si [2]. 
However, its full potential can only be unfurled if the diode has a proper 
edge termination, such as guard rings [4] and junction termination 
extension (JTE) [5], the design of which requires a lot of domain 
expertise and prolonged simulation time due to the huge design space. 
For GaN power diodes, the deployment of GaN-on-Si wafers can lower 
the cost but lead to higher leakage due to the threading dislocations 
[6,7]. GaN-on-GaN diode is preferred from the reliability considerations. 

In this paper, two methods are proposed to speed up the simulation 
and to find high BV (>1400 V) designs of GaN diode on GaN-substrate. 
One is to develop a faster but accurate TCAD simulation methodology. 
Another is to use TCAD-data-trained machine learning to enable surro
gate model development to inversely design a high BV diode. Section 2 

discusses the structure used. Section 3 discusses various approaches used 
for BV maximization and the results. 

2. Simulation setup 

TCAD Sentaurus is used for structure creation and device simulation 
[8]. Fig. 1 shows an example of the simulation structure. Guard rings are 
added next to the anode for edge termination. The n-type drift region is 
10 μm and is doped with 1016cm− 3 Silicon. The anode and the guard 
rings are p-type and doped with 1019cm− 3 magnesium. Fermi-Dirac 
statistics, incomplete ionization, high-field mobility saturation, and 
impact ionization are turned on using the calibrated parameter values in 
[9]. To maximize the BV, 5 design variables are used. The variables are 
the space (S) between the guard rings, the width (W) of the guard rings, 
the depth (D) of the guard rings, the number (N) of the guard rings, and 
the standard deviation (σ) of the guard ring junction. Fig. 2 shows the BV 
of an ideal 1D structure of about 2100 V which represents the theoretical 
limit. The current is scaled by assuming the third dimension is 1 mm. 
Using human expertise by experimenting with S, W, D, and N, the 
highest BV obtained is ~ 1100 V. 
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3. Results and discussion 

3.1. BV maximization through TCAD searching 

We then generate various devices using TCAD by randomly creating 
structures with S ∈ [0.25,5], W ∈ [0.25,5], D ∈ [0.01,1], N ∈ [0, 32], and 
σ ∈ [0.01,0.1] all in μm except N which is unitless. 300 structures were 
simulated, and the total simulation time is about 4 days on 30 cores. 
Only 2 structures are found to have BV > 1400 V (the highest one is 
shown in Fig. 2) using this random TCAD searching method. 

3.2. Rapid BV simulation 

It is desirable to find an accurate and fast simulation setup to speed up 
the TCAD searching process. Such a setup can also be used to generate 
enough data for machine learning (ML) in the following study. Various 
BV simulation simplification schemes such as removing incomplete 
ionization model, not solving hole continuity equation, using ionization 
integral method, etc. have been tested. Among them, it is found that only 
removing impact ionization and monitoring the peak electric field until 
it reaches 3.3MV/cm (GaN critical field) (fast model) provides a sig
nificant speedup and accurate solutions. Fig. 3 shows the relationship 
between the BV obtained using the fast model and the full model and 
they show a linear relationship. This shows that the onset of breakdown 
in this problem is determined by the electric field and its distribution. 

Fig. 4 shows the distribution of the simulation time of the two 
models. The speedup can be as much as 24 times and on average, the 

speedup is 5 times. Moreover, among the 300 simulations, 91 % converge 
using the fast model and only 62 % converge with the full model. 

The fast model is then used to simulate 3530 structures in about 5 
days. In contrast, the full model could only simulate 300 structures in 
about 4 days. To compare the performance of the full and fast model, a 
comparison between the number of high BV (>1400 V) structures ob
tained in each model is performed. If the fast model is more performant, 
then a larger amount of high BV structures would be expected. For the 
full model, it is already known that only 2 structures have high BV 
(>1400 V). To check how many high BV structures are obtained in the 
fast model simulation, selected structures need to be verified using full 
model simulations. The following methodology is used to select the 
structures to be verified. Fig. 3 shows a 95 % prediction interval used to 
determine this search range of structures with the highest chance to 
become high BV (>1400 V). This search range was determined by first 
finding the lowest fast model BV value that reaches a full model BV of at 
least 1400 V in the 95 % prediction interval. This value is found to be 

Fig. 1. A simulation structure examplar of the vertical GaN diode used in this 
study. Guard ring number (N) = 7 is used as an example. Four of the five design 
variables (S, W, D, N) are highlighted. The standard deviation, σ, of the junction 
gradient is not shown. 

Fig. 2. Reverse I-V curves of selected designs. The third dimension of the 2D 
structures is set to 1 mm. The parentheses contain the values corresponding to S 
(μm), W(μm), D(μm), N and σ(μm). 

Fig. 3. Relationship between the full model BV (with impact ionization) and 
the fast model BV (without impact ionization and extracting BV at maximum E- 
field = 3.3 MeV/cm). The fitted slope is 1.5893. The dashed lines show how the 
search range is determined. 

Fig. 4. Comparison of the simulation time using the full and fast models. Each 
point represents one simulated structure. The red line is y = x. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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812 V. Therefore, all structure that has a fast model BV > 812 V will be 
verified using the full model. There are 7 structures in this range and full 
model simulations of these structures are performed for further verifi
cation. 3 structures out of the 7 are found to have high BV (>1400 V). 
Thus, this result is 50 % more than the amount found solely using the full 
model in a similar amount of time. 

The benefit of the fast model can be seen by how it expands the 
search space greatly when the threshold of “high BV” is defined with 
lower values. Table 1 shows different redefinitions of what is considered 
“high BV” and the resulting performance. The amount of “high BV” in 
the full model still stagnates even if “high BV” is redefined with lower 
bounds. In contrast, the search space for the fast model increases greatly 
as “high BV” is redefined with lower bounds. This large search space is 
due to the speedup of the fast model, which allows for significantly more 
structures to be simulated at a reasonable time. 

3.3. BV maximization by ML-enabled surrogate model 

Even though the fast model can speed up the simulation by 5X, it still 
cannot find a design with a high enough BV. With the speed-up gained 
by the fast model, lots of data are made available to train ML models 
quickly. Two ML models are thus developed to correlate the 5 design 
parameters to the BV of the two datasets generated with the fast model 
earlier. Thus, the goal of this model is to predict the BV of a structure as 
if it were run by a fast model simulation, not the full model. The models 
are called NN275 and NN3530, where one model is trained with 275 
structures and the other is trained with 3530 structures, respectively. 
Keras [8] was used to train the models. Each model is a neural network 
(NN) with 1 input layer, 2 hidden layers (each has 50 hidden nodes with 
L2 regularization followed by batch normalization), and 1 output layer 
is used (Fig. 5). 80 % of the data is used with cross-validation and 20 % 
of the data is used for testing. 10-fold cross-validation is used with 3 
repeats for hyperparameter tuning and training with scikit-learn [9]. 
The performance metric used to evaluate the models is the coefficient of 
determination (R2) and it is used to determine how close the expected 
and predicted values are. An R2 value close to 1 indicates a good cor
relation. With the final test set, NN275 obtains R2 above 0.77 and 
NN3530 obtains R2 above 0.95. 

The trained machines are then used as surrogate models for the 
differential evolution optimization algorithm to design the guard ring 
based on any target BV. This is achieved by minimizing 
⃒
⃒f(S,W,D,N, σ) − Vtarget

⃒
⃒, where f is the output of the ML surrogate 

model and Vtarget is the target BV when running the fast model. Vtarget 

from 0 V to 1250 V are then fed into the differential evolution algorithm 
to inversely design the diode for the given Vtarget . Each of the optimi
zations takes only ~ 30 min on a laptop. SciPy [10], which is a library 
written in Python, contained the implementation of the differential 
evolution algorithm that was used. The algorithm is a population-based 
method and does not use gradients to minimize. 

For example, forVtarget = 1050 V, it is deduced that S = 1.385,W =

3.49,D = 0.85,N = 30, σ = 0.097 should be used. The corresponding 
TCAD structures are then constructed and simulated with the full model. 
Fig. 6 shows that the algorithm can inversely design the device well and 
most of the BV is near or within the expected range. The expected range 
is from the 95 % prediction interval in Fig. 3 which shows the variance in 
scaling between the fast and full models. Some points likely lie outside 
the expected range due to the ML models being trained on the fast model 

datasets, which are expected to have some inaccuracy in predicting a 
structure with the given Vtarget and with scaling to the full model. 

Fig. 6 also shows that NN3530 has 7 structures within the expected 
range and thus is found to be slightly more accurate than NN275. But it 
should be noted that it also has a larger variance compared to NN275. 
One possibility is that NN3530 is more overfitted as 10x more data are 
used for training. However, NN275 still has many of its structures close 
to the expected region and thus both methods are found to be closely 
matched. This implies that NN275, which was trained on only 275 
structures, has sufficient data for optimization. It can also achieve BV =
1887 V for Vtarget = 1050 V (target of the fast model), much higher than 
its training data after scaling (Fig. 2). This is ~ 89 % of the ideal value. 
Fig. 7 shows the electric field distribution of this structure. NN275 is 
believed to be as performant as NN3530 even with less data it is trained 
on because it seems to be able to capture the underlying patterns 
sufficiently. 

4. Conclusion 

We proposed a new TCAD setup that has a 5X faster speed and 2X 
better convergence for GaN diode BV simulation and has a linear cor
relation to the full model BV. This allows the finding of 50 % more de
signs with high BV (>1400 V). To further explore the design with higher 

Table 1 
Different Definitions of “High BV” and Number of “High BV” obtained.  

“High 
BV” 

Full 
Model 

Fast Model 
Search Space 

Fast Model Actual 
“High BV” 

Gain by using 
Fast Model 

1400 2 7 3 1.5X 
1300 3 12 5 1.67X 
1250 3 17 7 2.33X  

Fig. 5. NN used as a surrogate model for differential evolution algorithm to 
design guard rings for a target BV. 

Fig. 6. TCAD simulatated BV for the inverse designed structures predicted by 
the differential evolution trained on NN275 and NN3530. Expected range is 
based on the relationship found in Fig. 3. 
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BV, two NNs are built as surrogate models and, by using differential 
evolution, a design with BV as high as 1887 V is discovered. Both NNs 
are comparable, and it is found that both are similar in performance. 
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