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A B S T R A C T

The gain compression and excitation of higher order harmonics in 3 nm wide on-insulator type FinFETs is
investigated. The high computational burden related to the time-resolved analysis of such three-dimensional
devices is dealt with by applying a mode-space approach onto a Quantum Liouville-type Equation. With this
approach an increase in gain compression and higher order harmonic distortion is observed when decreasing
the fin height from 5 to 3 nm.
1. Introduction

Current interest in analog and mixed signal circuits is as high as
ever, with applications ranging from mixers and general systems on
chip (SoC) to specialized architectures for high-performance computing
(HPC) that can possibly outperform their digital counterparts [1].
Multigate-FETs with Gate-All-Around- (GAA) and Fin-type gate archi-
tectures are especially important due to their excellent channel control
and ease of integration into stacked transistor structures [2].

For amplifier and mixer applications, time-resolved quantum trans-
port simulations are necessary in order to study the nonlinear behavior
of these multigate-FETs. Quantum Liouville-type approaches in particu-
lar have been demonstrated to be well suited [3], but have been mostly
limited to either stationary or transient but low-dimensional devices in
the past (e.g. [4]).

In this contribution, the approach is extended to the three-
dimensional regime utilizing a Quantum Liouville-type Equation
(QLTE) in order to evaluate the gain compression in FinFETs. To further
reduce the computation time, the transport is effectively projected
onto the dominant transport direction. This is done by approximating
the density matrix in transport direction with an expansion in terms
of the eigensolutions of Schrödinger’s equation in the confinement
direction, the so-called modes [5,6]. The resulting method is called
mode-space approach, which enables the efficient and self-consistent
transport modeling.

Therefore, the approach to be presented is perfectly suited for the in-
vestigation of the charge carrier transport in nanoscale Multigate-FETs
in the time-domain. As quantum confinement is inherently included
with this method, the impact on RF characteristics, e.g. THz gain
compression, can be studied. An increase of nonlinearities as a result
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of quantum confinement has been predicted in simulations previously,
though only a simple harmonic balance method was used [7]. As an
example, with our approach this effect is confirmed and can be studied
in more detail.

2. Quantum transport in mode-space

An appropriate method based on the solution of a Quantum Liou-
ville type equation (QLTE), which is self-consistently solved along with
Poisson’s equation, is extended to allow an efficient three-dimensional
analysis. Ballistic transport and a constant effective mass 𝑚 is assumed
here, though the ansatz presented is perfectly suited for an exten-
sion to account for scattering, as well as a spatially varying effective
mass. First, Schrödinger’s equation in the effective mass- and Hartree
approximation

𝚤ℏ 𝜕
𝜕𝑡
𝛹 (𝑥, 𝑦, 𝑧, 𝑡) =

(

− ℏ2

2𝑚∗ 𝛁
2 + 𝑉 (𝒓)

)

𝛹 (𝑥, 𝑦, 𝑧, 𝑡) (1)

is solved assuming a carrier confinement in the 𝑦𝑧-plane and a domi-
nant transport in 𝑥-direction. This results in modes 𝑚 described by their
wave functions 𝜓𝑚(𝑦, 𝑧, 𝑡) and corresponding subband energies 𝐸𝑚. The
expansion of the wave function 𝛹 of Schrödinger’s equation in terms
of the modes 𝜓𝑚 leads to the ansatz

𝛹𝑘(𝑥, 𝑦, 𝑧, 𝑡) =
∑

𝑚
𝜑𝑚(𝑥, 𝑡)𝜓𝑚(𝑦, 𝑧, 𝑡), (2)

where the expansion coefficients 𝜑𝑚 have been introduced. Introducing
the coupling terms 𝐾𝑚𝑛,1 and 𝐾𝑚𝑛2, the following Schrödinger equations
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result, which can be rewritten for each mode 𝜓𝑚:

𝚤ℏ 𝜕
𝜕𝑡
𝜑𝑚(𝑥, 𝑡) =

(

− ℏ2

2𝑚𝑥
𝜕2

𝜕𝑥2
+ 𝐸𝑚(𝑥, 𝑡)

)

𝜑𝑚(𝑥, 𝑡)

−
∑

𝑛

ℏ2

𝑚𝑥

(

∬ 𝑑𝑦 𝑑𝑧 𝜓†
𝑚
𝜕
𝜕𝑥
𝜓𝑛

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾𝑚𝑛,1

𝜕
𝜕𝑥
𝜑𝑛(𝑥, 𝑡)

−
∑

𝑛

ℏ2

2𝑚𝑥

(

∬ 𝑑𝑦 𝑑𝑧 𝜓†
𝑚
𝜕2

𝜕𝑥2
𝜓𝑛

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾𝑚𝑛,2

𝜑𝑛(𝑥, 𝑡).

(3)

rom here on, only the self-coupling terms 𝐾𝑚,1 and 𝐾𝑚,2 corresponding
to the diagonal coupling terms 𝑛 = 𝑚 are taken into account. For the
FinFETs considered in this paper, the self-coupling terms are small in
comparison to the other coefficients in (3). As it can be seen from (3),
the term for 𝐾𝑚,2 can be interpreted as an additional potential and thus
leads to the idea of introducing the effective potential

𝑉𝑚(𝑥, 𝑡) = 𝐸𝑚(𝑥, 𝑡) −𝐾𝑚,2(𝑥, 𝑡) (4)

or each mode 𝑚. As is the case with the modal Schrödinger Eq. (3), a
odal density matrix

𝑚(𝑥, 𝑥′, 𝑡) =
∑

𝑘𝑥

𝑓3𝐷
(

𝐸𝑚(𝑘𝑥)
)

𝜑𝑚(𝑥, 𝑡)𝜑†
𝑚(𝑥

′, 𝑡) (5)

can be derived [8], which is then inserted into the von-Neumann
equation
𝜕
𝜕𝑡
𝜌𝑚 = − 𝚤

ℏ
[

�̂�, 𝜌𝑚
]

. (6)

After a transformation of the density matrix 𝜌𝑚(𝑥, 𝑥′) onto the center-
of-mass coordinates 𝜒 and 𝜉, with the former indicating the transport
direction, the following functions

𝐾±
𝑚,1(𝜒, 𝜉, 𝑡) = 𝐾𝑚,1(𝜒 +

𝜉
2
, 𝑡) ±𝐾𝑚,1(𝜒 −

𝜉
2
, 𝑡)

𝐵𝑚(𝜒, 𝜉, 𝑡) = 𝑉𝑚(𝜒 +
𝜉
2
, 𝑡) − 𝑉𝑚(𝜒 −

𝜉
2
, 𝑡),

(7)

re introduced. After applying a Fourier transform in 𝜉 direction, the
LTE in the so-called mode-space can be derived as
𝜕
𝜕𝑡
𝑓𝑚(𝜒, 𝑘, 𝑡) =

[

(

− ℏ𝑘
𝑚𝑥

+ 𝚤
4ℏ ∫

𝑑𝑘′

2𝜋
�̃�−
𝑚,1(𝜒, 𝑘

′′, 𝑡)
) 𝜕
𝜕𝜒

+ 𝚤
2ℏ ∫

∞

−∞

𝑑𝑘′

2𝜋
�̃�+
𝑚,1(𝜒, 𝑘

′′, 𝑡) ⋅ (𝚤𝑘′)

+ 1
𝚤ℏ ∫

∞

−∞

𝑑𝑘′

2𝜋
�̃�𝑚(𝜒, 𝑘′′, 𝑡)

]

𝑓𝑚(𝜒, 𝑘′, 𝑡).

(8)

Here, 𝑘′′ = 𝑘 − 𝑘′ has been introduced and the tilde denotes integral
ernels regarding 𝐾±

1 and 𝐵 similar to those of a prototype function
̃ [9]:

̃ (𝜒, 𝑘′′) = ∫ 𝑑𝜉 exp
(

−𝚤
(

𝑘′′
)

𝜉
)

⋅ 𝑈 (𝜒, 𝜉). (9)

The total charge carrier densities and current densities can then be
calculated from the modal Wigner functions 𝑓𝑚 as discussed in [4].

3. Investigation of gain compression in FinFETs

Key parameters regarding the size of the FinFET in question are
shown in Fig. 1. Two different FinFETs with a fixed fin width of
3 nm and fin heights of 3 and 5 nm are considered for demonstration
purposes. The undoped In0.53Ga0.47As channel is 10 nm long, as is
the gate contact. The electron affinity of the channel is 𝜒 = 4.5 eV.
For the oxide and gate material SiO2 and Ag are chosen, respectively
with a metal work function of 𝜑 = 4.74 eV assumed for the latter.
The source and drain regions on either end of the device are n-doped
2

a

Fig. 1. Schematic of the FinFET with all dimensions in nm.

Fig. 2. Subband energies belonging to the 3 lowest energy modes along a 3 × 3 nm
and a 3 × 5 nm FinFET. The subbands 2 and 3 are nearly degenerate in case of a
3 × 3 nm channel.

Fig. 3. Transfer curves of the FinFETs with marks indicating the operating points.

with 𝑁𝑠 = 𝑁𝑑 = 2 ⋅ 1019 𝑐𝑚−3. The eigenvalue problem resulting
rom Schrödinger’s equation in confinement direction is solved by
sing the Lanczos algorithm with Dirichlet boundary conditions and
he assumption of a spatially varying effective mass. It is solved at
ach time step in the transient case. The QLTE is discretized utilizing a
inite volume scheme as described in [9]. Inflow boundary conditions
o model carrier transport in and out of the device are adopted for
he mode-space approach [8,10] and a complex absorbing potential is
dded to avoid nonphysical solutions [11].
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Fig. 4. Time-dependent drain-end current density at 𝑉𝐴 = 0.025 V (—) and 𝑉𝐴 = 0.175
⋅ ⋅ ⋅).

Fig. 5. Normalized and squared Fourier coefficients of input (gate voltage) and output
(drain-end current density) for the center frequency 𝑓0 and the higher order harmonics
𝑓1 and 𝑓2.

Stationary results. In order to determine the operating points 𝑉0 for the
transient simulations, the stationary QLTE and Poisson’s equation are
solved iteratively for a constant gate voltage until the Hartree potential
𝑉𝐻 of succeeding iterations 𝑛 and 𝑛 − 1 converge in terms of the norm
‖𝑉 𝑛

𝐻 −𝑉 𝑛−1
𝐻 ‖, thus achieving self-consistency. In Fig. 2, a comparison of

the resulting subband energies along a 3 × 3 nm and a 3 × 5 nm FinFETs
is shown. As expected, decreasing the fin height leads to higher subband
energies, as well as nearly degenerate modes in case of the symmetric
3 × 3 nm channel. The transfer behavior is shown in Fig. 3. As it can
be seen, the 3 × 3 nm FinFET offers a higher gain but has a higher
threshold voltage as a result of the higher subband energies

Transient results. A harmonic gate voltage of 𝑉𝐺 = 𝑉0+𝑉𝐴 ⋅ sin(2𝜋 ⋅𝑓0 ⋅ 𝑡)
with a center frequency 𝑓0 = 250 GHz is applied for 18 𝑝𝑠 with a
time step width of 2 𝑓𝑠 and a constant drain source voltage 𝑉𝐷𝑆 of
1 V. Values from 0 V to 0.3 V are chosen for the amplitude 𝑉𝐴 with
increments of 𝛥𝑉𝐴 = 0.025 V. As it is evident from Fig. 4, compression
during the positive half-wave takes place sooner in the 3 × 3 nm FinFET
3

when compared to the 3 × 5 nm FinFET, thus leading to an expected
increase in distortion. The drain-end current density is also analyzed in
terms of the spectral components at 𝑓0 = 250 GHz and the harmonics
𝑓1 = 500 GHz and 𝑓2 = 750 GHz. As it is evident from Fig. 5, increasing
the channel dimensions from 3 × 3 nm to 3 × 5 nm leads to less
excitation of higher order harmonics and higher gain for 𝑓0.

4. Conclusion

In case of the two FinFETs considered, a decrease of the fin height
and thus increase in quantum confinement is shown to lead to a
rise in nonlinearities and distortion. Here, further work investigating
different channel dimensions and gate architectures is needed in order
to optimize amplifier behavior for class-A or class-C operation. Because
of the flexibility and efficiency of the mode-space approach, the method
can also be extended to atomistic models, the study of transport at low
to cryogenic temperatures or spintronic devices, where external fields
have to be included.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the German Research Funding As-
sociation Deutsche Forschungsgemeinschaft (DFG) under Grant SCHU
1016/8. Computing time was provided on the LiDO3 cluster at TU
Dortmund, partially funded in the course of the Large-Scale Equipment
Initiative by the DFG as project 271512359.

References

[1] Köppel S, Ulmann B, Heimann L, Killat D. Using analog computers in today’s
largest computational challenges. Adv Radio Sci 2021;19:105–16. http://dx.doi.
org/10.5194/ars-19-105-2021.

[2] Jha N, Chen D. Nanoelectronic circuit design. 2011, p. 1–485. http://dx.doi.org/
10.1007/978-1-4419-7609-3.

[3] Weinbub J, Ferry DK. Recent advances in wigner function approaches. Appl Phys
Rev 2018;5(4):041104. http://dx.doi.org/10.1063/1.5046663.

[4] Schulz L, Schulz D. Time-resolved mode space based quantum-Liouville type
equations applied onto DGFETs. In: 2020 International conference on simulation
of semiconductor processes and devices. 2020, p. 331–4. http://dx.doi.org/10.
23919/SISPAD49475.2020.9241644.

[5] Venugopal R, Ren Z, Datta S, Lundstrom MS, Jovanovic D. Simulating quantum
transport in nanoscale transistors: Real versus mode-space approaches. J Appl
Phys 2002;92(7):3730–9. http://dx.doi.org/10.1063/1.1503165.

[6] Ren Z, Venugopal R, Goasguen S, Datta S, Lundstrom M. NanoMOS 2.5:
A two-dimensional simulator for quantum transport in double-gate MOSFETs.
IEEE Trans Electron Devices 2003;50(9):1914–25. http://dx.doi.org/10.1109/
TED.2003.816524.

[7] Dasgupta A, Parihar SS, Kushwaha P, Agarwal H, Kao M-Y, Salahuddin S, et
al. BSIM compact model of quantum confinement in advanced nanosheet FETs.
IEEE Trans Electron Devices 2020;67(2):730–7. http://dx.doi.org/10.1109/TED.
2019.2960269.

[8] Jiang H, Cai W. Effect of boundary treatments on quantum transport current
in the Green’s function and Wigner distribution methods for a nano-scale DG-
MOSFET. J Comput Phys 2010;229(12):4461–75. http://dx.doi.org/10.1016/j.
jcp.2010.02.008.

[9] Schulz L, Schulz D. Formulation of a phase space exponential operator for
the Wigner transport equation accounting for the spatial variation of the
effective mass. J Comput Electron 2020;19. http://dx.doi.org/10.1007/s10825-
020-01551-0.

[10] Frensley WR. Boundary conditions for open quantum systems driven far
from equilibrium. Rev Modern Phys 1990;62:745–91. http://dx.doi.org/10.1103/
RevModPhys.62.745.

[11] Schulz L, Schulz D. Complex absorbing potential formalism accounting for
open boundary conditions within the Wigner transport equation. IEEE Trans
Nanotechnol 2019;18:830–8. http://dx.doi.org/10.1109/TNANO.2019.2933307.

http://dx.doi.org/10.5194/ars-19-105-2021
http://dx.doi.org/10.5194/ars-19-105-2021
http://dx.doi.org/10.5194/ars-19-105-2021
http://dx.doi.org/10.1007/978-1-4419-7609-3
http://dx.doi.org/10.1007/978-1-4419-7609-3
http://dx.doi.org/10.1007/978-1-4419-7609-3
http://dx.doi.org/10.1063/1.5046663
http://dx.doi.org/10.23919/SISPAD49475.2020.9241644
http://dx.doi.org/10.23919/SISPAD49475.2020.9241644
http://dx.doi.org/10.23919/SISPAD49475.2020.9241644
http://dx.doi.org/10.1063/1.1503165
http://dx.doi.org/10.1109/TED.2003.816524
http://dx.doi.org/10.1109/TED.2003.816524
http://dx.doi.org/10.1109/TED.2003.816524
http://dx.doi.org/10.1109/TED.2019.2960269
http://dx.doi.org/10.1109/TED.2019.2960269
http://dx.doi.org/10.1109/TED.2019.2960269
http://dx.doi.org/10.1016/j.jcp.2010.02.008
http://dx.doi.org/10.1016/j.jcp.2010.02.008
http://dx.doi.org/10.1016/j.jcp.2010.02.008
http://dx.doi.org/10.1007/s10825-020-01551-0
http://dx.doi.org/10.1007/s10825-020-01551-0
http://dx.doi.org/10.1007/s10825-020-01551-0
http://dx.doi.org/10.1103/RevModPhys.62.745
http://dx.doi.org/10.1103/RevModPhys.62.745
http://dx.doi.org/10.1103/RevModPhys.62.745
http://dx.doi.org/10.1109/TNANO.2019.2933307

	THz gain compression in nanoscale FinFETs
	Introduction
	Quantum transport in mode-space
	Investigation of Gain Compression in FinFETs
	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


