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A B S T R A C T

Generation of training dataset for machine learning-based device design algorithm is expensive. To address this,
we propose an active learning approach. Its efficiency is demonstrated through a Deep Neural Network (DNN)
based Laterally Diffused Metal Oxide Semiconductor Field-effect Transistor (LDMOSFET) off-state breakdown
voltage (BVDS,off) and specific on-resistance (Rsp) predictor. Our results show the possibility of ∼50% reduction
in the training dataset size without compromising the baseline accuracy. Specifically, we compared eight
sampling techniques and found that Informative-Query by Committee (I-QBC) and Diverse Informative-Greedy
Sampling (DI-GS) techniques work best with ∼ 1.87% Euclidean Norm of Prediction Error (ENPE).
1. Introduction

Technology Computer Aided Design (TCAD) tools, which solve the
physical equations at set mesh points, have been developed and used
over the years to reduce semiconductor device design time and cost.
However, the computational time for design of the devices with a
large number of mesh points is high (e.g. for high electric field simu-
lations to predict BVDS,off of LDMOSFETs). To tackle such bottlenecks,
data-driven surrogate models which mimic TCAD tools are being devel-
oped [1–6]. Popularly, DNNs trained using supervised learning (labeled
samples from the input feature space) are used. The prediction accu-
racy of these models improve as the dataset size increases. However,
generating a large dataset is computationally expensive and not always
feasible. Thus, developing surrogate models for complex devices with
a large number of input features is a challenge.

Active learning [7] – a technique of choosing the best samples from
a pool such that the accuracy of the surrogate model improves – was
proposed by Dongrui Wu [8]. It has been recently used for the inverse
design of photonic nanostructures [9]. Three criteria were suggested
to choose/label the efficient samples from a pool a finite pool- Infor-
mativeness (I), Representativeness (R) and Diversity (D). In this work,
eight different sampling techniques which promise to reduce the train-
ing dataset size are evaluated: I-GS (Informative-Greedy Sampling),
I-QBC (Informative-Query by Committee), DI-GS (Diverse Informative-
Greedy Sampling), DI-QBC (Diverse Informative-Query by Committee),
R-GS (Representative-Greedy Sampling), R-QBC (Representative-Query
by Committee), DR-GS (Diverse Representative-Greedy Sampling) and
DR-QBC (Diverse Representative-Query by Committee). Using these
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techniques, a DNN based LDMOSFET BVDS,off and Rsp predictor (sur-
rogate model) is developed and for the first time a sample-efficient
algorithm is proposed for semiconductor device design. The experi-
ments performed on training datasets with different sizes reveal that
up to ∼50% reduction in training dataset size can be achieved with-
out affecting the baseline ENPE (accuracy achieved without using
active learning based sampling techniques). The I-QBC and DI-GS tech-
niques outperform the others. Such a reduction in training dataset
size promises to open new frontiers for inverse design of complex
semiconductor devices.

2. Computational framework

Fig. 1 shows the LDMOSFET structure considered in this work. The
training and the test datasets are generated by simulating this struc-
ture in sprocess and sdevice tools of the Sentaurus TCAD suite [10].
The hydrodynamic carrier transport model is used for simulating the
electrical characteristics. The Van Overstraeten–De Man model is used
for electron and hole impact ionization (II) and breakdown voltage sim-
ulations. The Shockley–Read–Hall and Auger recombination models are
included to account for carrier generation and recombination. The band
gap narrowing model for silicon, doping dependent Masetti mobility
model, Lombardi surface mobility degradation model at silicon-oxide
interfaces and high-field mobility saturation models are also used for
accurate device simulation. With prior experience of physics based
design approach [11], seven design parameters (mentioned in Table 1)
are chosen to form the input feature space. Their ranges are varied
with respective resolutions so that the two output variables, BVDS,off
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Table 1
Design parameters, their ranges and resolutions.

Design parameter Range Resolution

Implant A Dose (D1) 0.8–1.2 × 1012 cm−2 0.1 × 1012 cm−2

Implant A Energy (E1) 160–220 keV 20 keV
Implant B Dose (D2) 0.8–1.2 × 1012 cm−2 0.1 × 1012 cm−2

Implant B Energy (E2) 260–320 keV 20 keV
Drift length (LD) 1.5–9 μm 0.2 μm
Field plate length (LFP) 0.5–4 μm 0.2 μ
Field plate dielectric thickness (tFP) 0.5–0.8 μm 0.1 μm

Design constraints: E1<E2, LFP<LD/2
Fig. 1. Schematic of the LDMOSFET structure with the device design parameters
(described in Table 1). These parameters affect BVDS,off and Rsp.

Fig. 2. The DNN based predictor (surrogate model) with seven nodes in the input layer
(device design parameters in Table 1) and two nodes in the output layer (BVDS,off,Rsp).

& Rsp, vary between 40–160 V and 90–430 mΩ mm2 respectively and
the generated samples have Rsp-BVDS,off tradeoff close to the theoretical
Silicon limit (Fig. 8). These input and output parameters combine to
form the DNN based surrogate model shown in Fig. 2. Also, they are
scaled between 0 and 1 before training the DNN. The scaling strategy
is given by, 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑥𝑚𝑖𝑛)∕(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

Here, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values of
the parameters. Rectified linear unit (ReLU) is used as the activation
function. Mean Absolute Relative Error (MARE), is used as the loss
function and it is defined as,

𝑀𝐴𝑅𝐸 = 𝐿(𝑌 , 𝑌 𝑎) = 1
𝑁

𝑁
∑

𝑖=0

|

|

|

|

|

𝑦𝑎𝑖 − 𝑦𝑖
𝑦𝑎𝑖

|

|

|

|

|

Here, 𝑦𝑎𝑖 is the actual value and 𝑦𝑖 is the DNN predicted value of the
𝑖th sample in a dataset of 𝑁 training samples. Adam optimizer, with an
adaptive learning rate, is used for DNN model training. ENPE plotted
for separately generated test dataset of 300 Latin Hypercube Samples
(LHS), is chosen as the accuracy figure-of-merit (FoM) to compare
different sampling techniques and structures of DNN predictor. It is
defined as,
2

Fig. 3. ENPE vs. number of hidden layers with different numbers of neurons per layer
plot. DNN with 3 hidden layers and 64 neurons per layer which shows the lowest ENPE
is fixed as the optimized predictor.

Fig. 4. ENPE vs. dataset size plot shows that ENPE reduces by increasing training
dataset size, for the chosen optimized predictor. The baseline ENPE is 1.86% for 1100
LHS samples w/o active learning.
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The configuration of DNN based predictor, for ENPE comparison of
different sampling techniques, is first optimized such that a balance
between under fitting and over fitting is achieved. Appropriate number
of hidden layers and neurons per layer are chosen by performing
experiments on a small training dataset of 100 LHS. As evident from
Fig. 3, the optimized predictor which provides the minimum ENPE has
3 hidden layers with 64 neurons each. Using this optimized predictor,
experiments with increased training dataset size are performed. As
shown in Fig. 4, it is observed that the ENPE reduces by increasing the
training dataset size and ultimately saturates to ∼ 1.86% for 1100 LHS.
This is considered as the baseline ENPE (without using active learning
based sampling techniques).
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Fig. 5. Flow chart depicting the efficient sampling algorithm. 8 different sampling techniques are proposed, considering the possible methods of (I) choosing B, (II) calculating
Euclidean distance and (III) choosing the distant m samples.
3. Sample-efficient algorithm

The sample-efficient algorithm depicted in the flowchart (Fig. 5), is
developed to reduce the dataset size without compromising the baseline
ENPE. As suggested in [8], first a pool of 𝑁 LHS samples is generated.
Next, depending on the possible two methods: (1) randomly or (2) using
k-means clustering, B base samples (∼20% of N) are selected (I) from
the pool and are simulated in TCAD. The second method adds diversity
to the base samples as it forms B clusters of N/B samples each and
then selects samples which are nearest to their centroids. The optimized
predictor is then trained using these B labeled samples. Further, the
samples are iteratively added from the remaining unlabeled samples of
the pool.

Euclidean distance of the remaining unlabeled (N-B-k*m) samples
is calculated from the mean of labeled (B+k*m) samples. Here, k is the
number of current iterations and m is the number of labeled samples
added per iteration (∼5% of N). It is calculated in one of the two spaces
(II) and so it leads to two methods: (1) Greedy sampling (GS) in input
feature space and (2) Query-by-Committee (QBC) in predicted output
space. Once the sampling space is selected, one chooses to add the
labeled samples based on their quality of (1) informativeness or (2)
diversity i.e. by selecting the most distant or the least distant samples
from the mean respectively (III). m additional samples are simulated in
TCAD, every iteration, and the optimized predictor is then trained using
the total B+(k*m) samples. If the targeted ENPE is achieved (|ENPE𝑡𝑎𝑟.-
ENPE| ∼ 0.02%), the developed training dataset is finalized and the
algorithm terminates. If not, ENPE is further checked. If the ENPE does
not saturate, the process of adding more samples from the unlabeled
samples is continued by increasing the number of iterations. If the ENPE
is saturated, a pool with higher 𝑁 (∼40% more than the previous N) is
selected and all the steps are repeated. Note that increasing B instead of
𝑁 is not an option as it will label majority of the samples from the pool
without judging their informativeness and representativeness. Further,
with higher N, B and m also increase so that targeted ENPE is achieved
with minimum iterations.

Combining different methods for steps (I), (II) and (III) of the
sample-efficient algorithm, we propose eight techniques which promise
to reduce training dataset size without affecting the baseline ENPE.
These are as elaborated below,

A. Informative-Greedy Sampling (I-GS): Base B samples are ran-
domly selected and labeled from a pool of 𝑁 LHS samples. m
most distant samples in the input feature space (farthest from
the mean of previously labeled samples) are added per iteration
from the unlabeled samples.
3

B. Informative-Query by Committee (I-QBC): Same steps are fol-
lowed as in I-GS, but the predicted output space is chosen as
the sampling space.

C. Diverse-Informative Greedy Sampling (DI-GS): Base B samples
are selected as the samples which are nearest to the centroids
of B k-means clusters. It adds diversity to the selected samples.
The additional samples are selected as the most distant unlabeled
samples from the mean of previously labeled samples, in the
input feature space.

D. Diverse Informative-Query by Committee (DI-QBC): Same steps
are followed as in DI-GS, but the predicted output space is
chosen as the sampling space.

E. Representative-Greedy Sampling (R-GS): Base B samples are ran-
domly chosen from the pool of 𝑁 LHS samples. Further, the
least distant or the nearest unlabeled samples from the mean of
previously labeled samples, in input feature space, are added in
every iteration.

F. Representative-Query by Committee (R-QBC): Same steps as in
R-GS technique are followed but the predicted output space is
chosen as the sampling space.

G. Diverse Representative Greedy Sampling (DR-GS): B samples
which are nearest to the centroids of B k-means clusters are
selected. Least distant m samples in input feature space are
added per iteration.

H. Diverse Representative-Query by Committee (DR-QBC): Same
steps as in DR-GS technique are followed but the predicted
output space is chosen as the sampling space.

Selecting each of the above sample-efficient techniques, experi-
ments are performed to generate training dataset of minimum size such
that the targeted baseline ENPE is achieved. Results are discussed in the
next section.

4. Results and discussion

The ENPE for all the eight techniques is extracted for the test dataset
of size 300. First, by performing the experiments on an LHS pool of
size N=500 (Fig. 6a & d). B=100 and m=25 were chosen so that size
of training dataset is 200 at the end of 4 iterations. ENPE reduces
Due to the increase in dataset size, ENPE for all the 8 techniques
reduces. However, the ENPE saturates to the lowest value of ∼ 3.12%
for the I-QBC technique. To further reduce the ENPE, second dataset
with N=700, B=150 and m=50 is considered (Fig. 6b & e). After 4
iterations, the training dataset of size 350 could achieve the lowest
ENPE of ∼ 2.44% using DI-QBC sampling technique but it still remains
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Fig. 6. ENPE of the predictors trained using 8 active learning based sampling techniques for 3 different datasets. It is calculated for the test dataset of size 300. N, B and m
increase from (a) to (c) and from (d) to (e). I-QBC and DI-GS sampling techniques achieve ∼ 1.87% ENPE with total 500 samples (N=900, B=200 and m=75) as compared to 1100
HS samples w/o active learning.
Fig. 7. ENPE vs dataset size plot shows that the LHS under performs when compared
with the most efficient DI-GS and I-QBC sampling techniques. The difference between
the ENPEs is more evident for smaller training dataset sizes.

Fig. 8. The Rsp vs. BVDS,off plot of actual and predicted values of the test dataset. The
ost efficient DI-GS sampling technique with total 500 samples is used to train the
redictor.

igher than the targeted baseline ENPE. The third dataset with N=900,
=200 and m=75 (Fig. 6c & f) is found to be sufficient to achieve
aseline ENPE of ∼ 1.87%. Specifically, the I-QBC and DI-GS techniques
4

work best. ENPE achieved with 500 training samples labeled using
sample-efficient algorithm is same as that of 1100 LHS without active
learning. The training dataset size is reduced by ∼50% and thus the
computational cost of dataset generation is halved. Fig. 7 compares
ENPEs of the most efficient DI-GS and I-QBC sampling techniques with
that of LHS. It clearly shows that the proposed techniques perform
better than LHS, especially for smaller training dataset sizes.

The surrogate model is further trained with the 500 samples labeled
using the DI-GS technique for N=900, B=200 and m=75. For the test
dataset of size 300, Fig. 8 shows the Rsp-BVDS,off trade-off. As the ENPE
is ∼ 1.87%, the actual and predicted values are in good agreement.

5. Conclusion

To summarize, a sample-efficient algorithm for device design surro-
gate model is developed using eight different techniques. It is demon-
strated by predicting BVDS,off and Rsp of LDMOSFETs. 50% reduction in
the training dataset size is achieved by the I-QBC and DI-GS efficient
sampling techniques without compromising the baseline ENPE of ∼
1.86%. These benefits can be leveraged by using surrogate models in
the inverse design of devices with large number of design parameters.
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