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A B S T R A C T   

Attaining the ferroelectric (FE) polarization in a thin HfO2 layer using a specific dopant is a widely adopted way 
to realize Negative Capacitance (NC) FET. In a general TCAD simulation study of NC-based devices, the NC 
property of the FE layer is strongly dependent on the values of Landau parameters (α,β,γ,ρ,g), which are unique 
for specific dopants and FE thickness. In this paper, for the first time, we investigated the reliability of TCAD 
simulations with which NC FinFET is simulated for a specific dopants-based FE-HfO2 layer. The possible dopants 
used to realize a thin-HfO2 layer as a FE layer are Al, Gd, La, Si, Sr, Y, and Zr. Each dopant has different (α,β,γ,ρ,
g) and thus offers a different NC regime of operation, i.e., S-curve. α and β are the dominant parameters if we 
consider the uniform polarization under quasi-static analysis. Further, the change in ambient temperature alters 
the value of α, resulting in changes in the NC-state. Hence, for the reliable TCAD-based NC study, the precise 
selection of Landau parameters and dopants is needed for optimized performances.   

1. Introduction 

In sub-22 nm node, FinFETs-based CMOS devices have gained 
popularity due to enhanced gate electrostatic controllability, subsided 
short channel effects (SCEs), and better power performance compared to 
conventional planar MOSFET [1–3]. However, the physical mechanism 
of the carrier transport imposes a limit of 60 mV/decade on the sub-
threshold slope (SS) at room temperature (300 K). Thus, to realize a 
steeper-slope device, the idea of NC was reported and implemented 
using FE-layer in the gate stack. Employing a ferroelectric (FE) layer 
along with the dielectric (DE) layer in the gate stack provides a stabilized 
NC operation, which induces internal voltage amplification, resulting in 
improved gate electrostatics. Hence, the device will exhibit steep slope 
characteristics [4–7]. In downscaled devices, the realization of the 
conventional perovskite materials is not feasible due to their larger 
thicknesses, incompatibility with the conventional fabrication process, 
and environmental issues. Thus, the doped-HfO2 layer is implemented to 
realize a thin film FE layer for compatible process integration [8,9]. The 
doped-HfO2 layer offers significantly high remanent polarization up to 
45 µC/cm2 and a large coercive electric field (~1–2 MV/cm). To the best 
of our knowledge, in the available literature, to create a thin film doped- 
HfO2 FE layer, seven different dopants are used: D1: Aluminum (Al) [Pr 

= 5, EC = 1.3]; D2: Gadolinium (Gd) [Pr = 20, EC = 1.75]; D3: 
Lanthanum (La) [Pr = 45, EC = 1.2]; D4: Silicon (Si) [Pr = 10, EC = 1.0]; 
D5: Strontium (Sr) [Pr = 23, EC = 2.0]; D6: Yttrium (Y) [Pr = 24, EC =

1.2]; and D7: Zirconium (Zr) [Pr = 18, EC = 1.0]. The Pr and EC are in µC/ 
cm2 and MV/cm, respectively. In general, Hf0.5Zr0.5O2-based ferroelec-
tric material exhibits better compatibility with the CMOS devices due to 
equal atomic radius of Hf and Zr atoms and lower thermal transition 
integration (400–600 ◦C) [9]. Thus, in the TCAD simulation of NC de-
vices, the dopant-dependent Landau parameters are taken. However, a 
thorough investigation of the reliability and optimization of these pa-
rameters, i.e., the choice and significance of the dopants for the HfO2 
layer to convert into the FE layer, is not yet explored. 

The key contribution of the work explores: (i) the impact of different 
Landau parameters (α, β, γ, ρ, g) for uniform FE layer under quasi-static 
operation; (ii) the impact of temperature on α and its significance on the 
NC-regime, i.e., S-curve; (iii) the impact of temperature on the trans-
conductance and drivability over different dopant-dependent FE layer; 
(iv) the capacitance matching and its variation with varying tempera-
ture. Thus, a proper investigation is needed to select the dopant of the 
HfO2-layer for optimal NC operation. 
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2. TCAD setup for NC-FinFET 

A 14 nm industry-standard FinFET is employed to realize the base-
line NC-FinFET using Sentaurus TCAD [10] by placing the Zr-doped HfO2 
layer in the gate stack (Fig. 1). The TCAD setup includes a conventional 
drift–diffusion model for carrier transport. The mobility, saturation ve-
locity, SRH recombination, high field saturation, quantum correction 
models, etc., have been included and adequately tuned to get a good 
match in IDS-VGS curves (Fig. 2a) between the simulated TCAD results 

and experimental data [11]. The various device parameters used in the 
simulation are mentioned in Table 1. Further, to realize the NC effect in 
FinFET, the FEPolarization model is incorporated into the simulation 
setup. The L-K parameters are well-calibrated against the experimental 
MFIM (metal-ferroelectric-insulator–metal) capacitor [12], as shown in 
Fig. 2(c). We assumed uniform polarization in our analysis, considering 
the homogeneous monodomain thin FE layer for quasi-static analysis. 
Therefore, the minimum possible permissible value of domain interac-
tion coefficients (g) and damping constant (ρ) provided in TCAD has 
been selected to resemble our assumptions. The extracted α, β, γ pa-
rameters are used to get a good fit of the S-curve (Fig. 2c). The realized 
NC FinFET show improved performances (Fig. 2d-e), i.e., ION & SS, due 
to the internal voltage amplification of the FE-layer. 
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Fig. 1. Schematic of an NC-FinFET realized by placing a doped-HfO2 ferro-
electric (FE) layer at the gate stack. 

Fig. 2. (a) shows the calibration of the simulated IDS-VGS curves against the experimental data [11]; (b) a schematic of the MFIM capacitor and equivalent capacitor 
network at the gate stack; (c) shows the calibration of the S-curve against experimental data [12]; (d-e) the realized NC-FinFET (Fig. 1) offers higher ION, lower IOFF, 
and steeper SS. The device parameters used in the simulation are mentioned in Table 1. 

Table 1 
Parameter table.  

Parameter Value 

Gate Length (LG) 20 nm 
Fin Height (Fh) 26 nm 
EOT 0.9 nm 
Spacer Length (LSP) 8 nm 
Fin Width (Fw) 6.5 nm 
Source Doping (NS) 1020 cm− 3 

Channel Doping (NC) 1016 cm− 3  
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3. Results and discussion 

The paper presents a detailed analysis of HfO2 dopant-specific 
parameter-dependent NC FinFET using TCAD and the impact of 
ambient temperature on Landau parameters in the following 
subsections: 

3.1. L-K parameters for material specific dopants in HfO2-based FE layer 

In TCAD simulations, the NC effect can be included using the 
FEpolarization model with appropriate Landau parameters, which are 
dependent on the dopants of the HfO2-based FE layer. The different 
parameters used in our simulation are based on governing Landau- 
Khalatnikov (L-K) equation, given as: 

EFE = 2αxP+ 4βxP3 + 6γxP
5 + ρx

∂P
∂t

− 2gxΔP (1)  

where P is polarization and EFE is the field across the FE layer. Here, αx =

− α′

x × 1010cm/F and βx = β
′

x × 1020 cm5/ F / C2. The default value of ρx 
= 2.25 × 104 Ω-cm, γx = 0, and gx = 10− 4 cm3/F have been considered, 
as mentioned in the TCAD manual under quasi-static analysis for single 
domain FE-layer. 

Therefore, the vital parameters are α and β, which significantly in-
fluence the NC state. For different dopants, we plotted the S-curves, 
showing the NC regime (Fig. 3a). D2 offers a larger span of the NC re-
gion; however, D3 shows a higher NC. Whereas the IOFF degrades in D3 

due to the lower value of β, in turn, higher SS (Fig. 3c, e). In contrast, the 
enhanced ION is achieved in D4 and D6, showing a higher dependency of 
ION on α (Fig. 3b, d & Table 2). 

3.2. Impact of temperature on L-K parameters 

The impact of temperature (T) is severe on α, as it is a linear function 
of T (Fig. 4a), however, βx and γx are weak function of temperature. 
Mathematically, the impact of temperature variation on α is given as: 

αxT = α0x(T − Tc) (2)  

where, α0x has a positive temperature coefficient, and Tc is the Curie 
temperature (<650 K) above which FE property may be lost. The in-
crease in T reduces the coefficient α0x (Fig. 4a), resulting in a change in 
αxT (x: dopant). Therefore, the NC regime gets shrinks (Fig. 4b). The ION 
thus reduces with higher T (Fig. 4c). An increase in T also causes 
mobility degradation and the bandgap narrowing; in turn, IOFF increases 
(Fig. 4d) [13]. 

3.3. Impact of temperature on gm 

The impact of temperature and Landau parameters are essential for 
analog design metrics like transconductance (gm), total gate capacitance 
(Cgg), etc.[14]. 

As we increase the T, the gm of the doped HfO2-based NC FinFET will 
decrease (Fig. 5a-e), which causes severe degradation in the device 
performance. Thus, the impact of α on threshold voltage (Vth) is more 

Fig. 3. (a) shows the NC-state is strongly dependent on αx and βx, resulting in 
different S-curves for different α′

x and β
′

x values, as mentioned in Table 2; (b) 
shows the IDS-VGS characteristics for different material-specific dopants; (c) the 
SS for different dopants; (d-e) ION (IOFF) dominantly governed by α′

x (β
′

x). 

Table 2 
Different NC coefficient values for various dopants.  

Parameter α′

x β
′

x 

Al (D1)  10.55  2.06 
Gd (D2)  11.36  1.42 
La (D3)  3.46  0.8 
Si (D4)  12.99  6.49 
Sr (D5)  11.29  1.06 
Y (D6)  12.5  3.28 
Zr (D7)  8.6  1.3  

Fig. 4. (a) Shows the impact of temperature on α′

x, in turn, alters the FE po-
larization; (b) the S-curve with varying temperature influences the NC-state 
operation; (c-d) the impact of temperature on ION and IOFF of various dopant- 
specific FE layers. 
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pronounced (Fig. 5f). 

3.4. C-V characteristics for different dopants 

The capacitance matching with varying Landau parameters and 
temperature is investigated in Fig. 6. The capacitance matching occurs 
at the subthreshold region for the dopants with higher Pr, i.e., lower α 
and β. However, the capacitance matching in the saturation region 
dominates for the dopants with lower Pr values, i.e., higher α and β. 
Further, the temperature influences the capacitance matching in NC 
FinFET, resulting in the modulation of channel capacitances (Fig. 6a-e). 

4. Conclusions 

For a reliable TCAD simulation of the Negative Capacitance (NC) 
devices, the selection of the appropriate Landau parameters (α,β,γ,ρ,g) is 
crucial as it frames the span and slope of the S-curve, which states the NC 
operation. In scaled NC devices, the HfO2 layer is doped with the 
appropriate dopants to achieve ferroelectricity. The type of the dopants 
alters the Landau parameters and, thus, the reliability of the simulated 
NC devices. For quasi-static operation under consideration of a single 
domain FE layer, only the α and β parameters play a significant role. The 
ION and IOFF are functionally dependent on α and β, respectively. Further, 
the temperature shows a linear trend with α and strongly influences 
α0 (i.e., temperature coefficient). Thus, an increase in temperature de-
teriorates the device’s performance. Hence, a thorough investigation of 

(α,β, γ,ρ, g) is essential to simulate an NC device in TCAD. 
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Fig. 5. Shows the impact of increasing the ambient temperature from 250 K to 
350 K on (a-e) transconductance (gm), which is indeed a key parameter in 
analog circuit design. Increasing the temperature decreases the maximum gm 
value due to the deterioration of the dominant ‘α’, the Landau parameter. 
However, the temperature-induced gm and threshold voltage (Vth) deterioration 
(f) are mitigated by internal voltage amplification provided by the dopant- 
dependent HfO2-based FE layer. 
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Fig. 6. (a-e) shows the C-V characteristics showing the capacitance matching 
for different dopants and varying temperatures. The higher (lower) Pr exhibit 
capacitance matching in the subthreshold (saturation) region. 
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