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A B S T R A C T

A projection-based learning method developed previously based on proper orthogonal decomposition (POD),
together with the quantum element method (QEM), is investigated for a 2D multi-element quantum nanos-
tructure, where an element denotes a generic subdomain of a group of nanostructures. Unlike many other
projection-based models, the basis functions for the POD approach are trained via solution data of the electron
wave functions in the selected quantum state (QS) derived from direct numerical simulation of the Schrödinger
equation for the nanostructure. This learning process minimizes the least square error with a small set of basis
functions to reduce computational effort. Based on the QEM, the nanostructures are first partitioned into
smaller generic elements (i.e., building blocks), and each of the elements is projected onto the POD space
and stored in a database. For a large nanostructure, several generic elements can then be selected and glued
together to perform simulation of the selected large nanostructure with the interface continuity imposed by
the discontinuous Galerkin method. It has been shown that the QEM offers a reduction in numerical degrees of
freedom (DoF) by 3 to 4 orders of magnitude for the trained quantum states with a high accuracy compared to
direct numerical simulation. For some untrained quantum states above the trained states, a reasonably accurate
prediction can be achieved with a few more DoF.
1. Introduction

Quantum nanostructures have many scientific and engineering ap-
plications in material sciences, medicine, electronics, photonics, etc.
[1–8]. Analysis of such structures often rely on direct numerical simu-
lations (DNSs) of the Schrödinger equation which are computationally
intensive when high accuracy and resolution are needed. This work
continues the investigation on an effective quantum simulation method-
ology for electron wave functions (WFs) in multi-dimensional nanos-
tructures [9]. This methodology employs proper orthogonal decomposi-
tion (POD) [10,11] in which the Schrödinger equation is projected onto
a functional space represented by a finite set of basis functions (POD
modes). Implemented with a learning algorithm trained via WF data,
this approach is able to significantly reduce the degrees of freedom
(DoF). One disadvantage of this approach however, is that it requires
DNS WF data to generate/train the POD modes, which for large-scale
multi-dimensional structures might be prohibitive.

To improve the training efficiency, this work implements the quan-
tum element method (QEM), developed previously [12] for 1D quan-
tum structures, in the POD simulation methodology for multi-dimensi-
onal nanostructures. The QEM combines domain decomposition with
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the POD training, allowing for the creation of modular generic elements
which can be trained and stored in a database for the design and
simulation of large nanostructures.

2. Background of quantum element method

The electron WF is described by the Schrödinger equation,

∇ ⋅
[

− ℏ2

2𝑚∗∇𝜓
]

+ 𝑈𝜓 = 𝐸𝜓, (1)

where 𝜓 is the electron WF, ℏ is the reduced plank constant, 𝑚∗ is the
electron effective mass, 𝑈 is the potential energy of the system and 𝐸
is the quantum state (QS) energy.

POD generates a set of modes 𝜂(𝑟), from the WF solution data
generated via DNS of the Schrödinger equation. Each POD mode is
created by maximizing its mean square inner product with the data,
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Fig. 1. (a) A 4-element structure for demonstration of QEM and (b) two 9-element structures for WF data collection.
Using calculus of variation, the maximization process can be reformu-
lated to a Fredholm equation of the second kind,

∫𝛺′

⟨

𝜓(𝑟)⊗𝜓(𝑟′)
⟩

𝜂(𝑟′)𝑑𝛺′ = 𝜆𝜂(𝑟), (3)

where ⊗ is the tensor operator and 𝜆 is the POD eigenvalue of the data.
After generating the POD modes, the WF can be formed via a linear
combination of these POD Modes,

𝜓(𝑟) =
𝑀
∑

𝑗=1
𝑎𝑗𝜂𝑗 (𝑟), (4)

where 𝑀 is the number of modes selected and 𝑎𝑗 are weighting coeffi-
cients. To determine 𝑎𝑗 , a set of equations can be found by projecting
the Schrödinger equation onto each POD mode,
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(5)

Using the QEM for a multi-element domain, elements are 𝑔𝑙𝑢𝑒𝑑
together with the interior penalty discontinuous Galerkin (DG) method
[13,14] to ensure interface continuity. The 𝑝th element projected along
the 𝑖th mode described by (5) therefore becomes
𝑀𝑝
∑

𝑗=1
(𝑇𝜂𝑝 ,𝑖𝑗 + 𝑈𝜂𝑝 ,𝑖𝑗 )𝑎𝑝,𝑗 +
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(6)

where 𝑀𝑝 and 𝑀𝑞 are the number of modes in the 𝑝th and 𝑞th
elements [12]. Additionally, the entries of the interior kinetic energy
matrix for the 𝑝th element is found to be

𝑇𝜂𝑝 ,𝑖𝑗 = ∫𝛺𝑝
∇𝜂𝑝,𝑖 ⋅

ℏ2

2𝑚∗
𝑝
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the entries of the potential energy matrix are

𝑈𝜂𝑝 ,𝑖𝑗 = ∫𝛺𝑝
𝜂𝑝,𝑖𝑈𝜂𝑝,𝑗𝑑𝛺, (8)

the entries of the diagonal boundary kinetic energy matrix are
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and the entries of the off diagonal boundary kinetic energy matrix are
expressed as
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1
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∫𝑆𝑝𝑞 2𝑚𝑝
In the above equations, 𝜇 is the penalty parameter defined as 𝜇 =
𝑁𝜇∕𝑑𝑟 where 𝑑𝑟 is the local mesh size at the interface and 𝑁𝜇 is the
non-unit penalty number.

3. Materials and structures

The QEM (namely the multi-element quantum POD approach) is
applied to the test nanostructure seen in Fig. 1(a) composed of 4
elements with imposed homogeneous Dirichlet and Newman boundary
conditions. The quantum dots (QDs) are composed of the GaAs/InAs
heterostructure where the effective mass in GaAs 𝑚∗

𝐺𝑎𝐴𝑠 = 0.067𝑚0 and
in InAs 𝑚∗

𝐼𝑛𝐴𝑠 = 0.023𝑚0 and the band offset 𝛥𝐸 = 0.544 eV. The POD
modes for these elements are trained by collecting DNS WF data after
subjecting two 9-element training structures shown in Fig. 1(b) with
single component electric fields. In this work, the Hamiltonian in (1) is
formulated based on a single-band effective mass model for electrons
in each of GaAs and InAs in DNS using central difference. In addition
to an unbiased sample, two groups of orthogonal electric fields in 𝑥
and 𝑦 directions are applied to the training structures where 5 fields
are applied in each direction. The magnitudes of these electric fields
vary evenly between −35kv/cm and +35kv/cm. In each case, the WFs
of the first 6 QSs were collected and used to train the POD modes for
each element. This is accomplished via the method of snapshots [15–
17] for (3) to generate the POD modes that are then used to evaluate
the coefficients in (7)–(10).

4. Results and discussions

The test nanostructure given in Fig. 1(a) is used for the demon-
stration of the multidimensional QEM. The structure is subjected to an
electric field with 𝑥 and 𝑦 components, 𝐸⃗ = 25𝑥̂−15𝑦̂. After the training
using two 9-element structures, as stated in Section 3 where only the
first 6 QS WFs are collected, the QEM is used to predict the WFs for
the first 8 QSs. These results are then compared to those of the DNS
of the Schrödinger equation to verify the POD simulation model. The
DNS control uses a grid size of 0.2 nm in both 𝑥 and 𝑦 directions, thus
resulting in 90601 DoF. In the POD simulation, 𝑁𝜇 = 2 is selected for
the penalty number in (9) and (10).

The profile and contour plots given in Figs. 2 and 3, respectively,
reveal that the POD QEM agrees with the DNS quite well with 8 modes
per element for the trained 6 QSs. It is interesting to observe in Fig. 2
that only 2 and 4 modes for each element in the QEM are needed in
QSs 1 and 2, respectively, to offer a good accuracy compared to the
DNS results; however, 8 modes are needed to reach a good accuracy
for QSs 4 and 6.

To observe the influence of the POD modes on the QEM accuracy,
the least square (LS) error is illustrated in Fig. 4 as a function of
the number of modes per element. For the QEM to reach an LS error
near or below 2%, 2, 4, 8, 8, 8 and 8 modes are needed in QSs 1–6,
respectively. With an error near 2%, the POD and DNS WF profiles are
nearly indistinguishable, as shown in Fig. 2. The maximum LS error
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Fig. 2. WF Profile plots of QSs 1, 2, 4 and 6. First and second rows indicate cross-section along horizontal and vertical lines, respectively, indicated from contour plots seen in
Fig. 3.
Fig. 3. Contour plot of WFs of QSs 1, 2, 4 and 6. First row are WFs calculated via
POD while WFs in the second row are from DNS.

Fig. 4. LS Error Plot of WFs of first 8 QSs.

for all the trained states is near 1.2% beyond 13 modes per element.
In general, the POD model is more effective for the lower QSs. For the
untrained states, the LS error is slightly larger. In the 7th QS, 4.9%,
4.3% and 3.8% are observed when 13, 19 and 22 modes are included
in each element. However, for the 8th state, an LS error near 3.4% or
below 3%, can be reached when using 10 or 16 modes, respectively.
3

As indicated in Figs. 2–4, the QEM needs only 2–4 modes per
element in lower QSs to reach a very accurate prediction; however, 8
modes per element are needed for the trained higher QSs to reach an
LS error under or near 2%. Nevertheless, the QEM requires drastically
less DoF compared to DNS whose DoF equals 90,601 in this study.
This results in a significant amount of saving in computational time
for the QEM. For example, in the worst case for results presented in
Fig. 2, the QEM offers a reduction in computational time by 2 orders
of magnitude. Our study shows that, when using the QEM in a large
simulation domain, the larger the elements that are implemented in
the simulation (i.e., a smaller number of elements in the domain), the
better performance in computational time that can be achieved. The
trade-off for using larger elements to speed up the QEM simulation is
that more intensive computational effort is needed in the training of
the selected elements.

The comparison of the eigenenergy in each QS between the POD
and DNS is included in Table 1. The deviation of the POD eigenenergy
from that of the DNS is less than 0.68% in QSs 1–7, where QS 7 is
not trained. For the other untrained state, QS 8, the error of the POD
eigenenergy is still as small as 0.83%. It should be noted that QSs 3
and 4 are nearly degenerate with a small energy difference of 2.35meV
and 2.32meV from DNS and the POD QEM respectively.

It is worthwhile to mention that the training of POD modes was
carried out separately in 2 orthogonal directions, and yet the QEM is
able to predict the WFs and eigenenergies with a high accuracy using
an electric field that combines these 2 orthogonal fields. In addition,
even though WF data for States 7 and 8 were not collected for the
training of POD modes, the QEM is still able to offer the WF solution
and eigenenergy in these 2 states with a good accuracy.

5. Conclusion

The QEM has been investigated for a 2D multi-element QD struc-
ture. It has been illustrated that the QEM is able to provide an accurate
prediction of both the WF and eigenenergy in each of the trained
QSs with 2 to 8 modes per element. In general, a similar accuracy
can be reached with a smaller number of modes in the lower QSs.
The investigation has demonstrated a reduction of 3 to 4 orders of
magnitude in the required numerical DoF for the trained QSs, compared
to the DNS. This study has also found that the QEM reduces simulation
time by 2 orders of magnitude. For the untrained QSs in the test QD
structure, the QEM offers a good prediction with a few more modes.
Moreover, POD training with single components of orthogonal electric
fields is sufficient to develop a POD simulation approach for an electric
field constructed using these 2 orthogonal components.
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Table 1
Percentage error of eigenenergy in each state.

QS POD Energy (eV) DSN Energy (eV) (%) Difference

1 0.29888 0.29701 0.62631
2 0.30360 0.30229 0.43295
3 0.34313 0.34119 0.56768
4 0.34545 0.34354 0.55297
5 0.35336 0.35097 0.67970
6 0.38199 0.37969 0.60448
7 0.38521 0.38263 0.67287
8 0.39698 0.39371 0.82581
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