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Non-local transport effects in semiconductors under low-field conditions 
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A B S T R A C T   

Macroscopically non-local effects arise in semiconductor devices whenever the mean free path and/or the 
deBroglie wavelength are not small compared to geometry/flow length scales. In such cases standard diffusion- 
drift (DD) theory becomes inaccurate and in need of revision, with the best known example being density- 
gradient (DG) theory. Here we consider a similarly motivated gradient correction to the electron-lattice inter-
action that accounts for non-locality in the transport physics. Versions of DD and DG theory with this correction 
are discussed and the DD-based approach is illustrated by applying it to the analysis of long-channel field-effect 
transistors where it provides a new physics-based approach for treating surface scattering.   

1. Introduction 

Macroscopically non-local effects are common in electron transport 
in semiconductor devices, occurring whenever the mean free path (mfp) 
and/or the deBroglie wavelength are not small compared to geometry/ 
flow length scales. When such effects are important, standard diffusion- 
drift (DD) theory becomes inaccurate and should be modified to account 
for the non-local effects. One well-known example is provided by 
density-gradient (DG) theory [1], and here we investigate another in 
which the non-locality is instead manifested in the transport physics. 

The importance of non-local transport effects associated with the mfp 
is gauged by the Knudsen number defined as the ratio of the mfp to a 
characteristic length scale of the situation. When this number is appre-
ciable, one is in the Knudsen regime and governing macroscopic equa-
tions will contain various gradient-dependent correction terms. The 
classic derivation of this physics is from the Boltzmann equation via the 
Chapman-Enskog expansion [2,3]. An analogous thing happens in a 
quantum mechanical context with DG theory wherein the equation of 
state for the electron gas contains an added gradient term that provides a 
lowest-order accounting for quantum non-locality [1]. Here, using 
methods of classical field theory [4], we undertake a similar develop-
ment but with the gradient corrections now capturing classical and/or 
quantum non-locality effects on scattering. 

In semiconductor devices non-local transport effects are most im-
pactful in high-field and quasi-ballistic situations, however, we leave 
these cases for the future and instead focus here on the much simpler 
problem of a long-channel field-effect transistor (FET) under low-field 

conditions. The conventional modeling approach of this situation uses 
DD or DG theory, but this is questionable given that the electron mfp 
(and perhaps the deBroglie wavelength) is not small compared to the 
inversion layer thickness. The kinds of physical effects we are concerned 
with may be understood by considering three hypothetical boundary 
layer flows depicted in Fig. 1, each dominated by a different scattering 
mechanism. Fig. 1a corresponds to the situation of ordinary Navier- 
Stokes fluid mechanics with the effect of the boundary transmitted 
into the flow by inter-particle scattering (expressed macroscopically as a 
viscous stress) and resulting in the non-uniform average velocity profile 
shown. Because electron–electron scattering is generally weak, this 
picture is almost always irrelevant to electron transport [5]. Fig. 1b 
instead pictures a flow of electrons inside a semiconductor in which it is 
assumed that there is no electron–electron scattering, that the deBroglie 
wavelength is short enough that quantum non-locality plays no role, and 
that the wall scattering is diffuse. The mfp is assumed to be long so that 
the effect of the diffuse wall scattering extends non-locally out into the 
flow, again producing a non-uniform average velocity profile as shown. 
Lastly, in Fig. 1c a second electron flow is considered in which all is the 
same as in Fig. 1b except that the mfp is now assumed short and the 
deBroglie wavelength is instead taken to be long as depicted by the 
smearing of the green color associated with each electron that corre-
sponds to the probability of it being at any given location. Within this 
Born interpretation the diffuse scattering by the boundary will be non- 
local with a probability proportional to the overlap of a given elec-
tron’s ‘spread’ with the boundary potential. In this way, quantum non- 
locality can also produce a non-uniform average velocity profile as 
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shown in the figure. 

2. Theory 

As in previous work [1], we here employ classical field theory 
methods [4] to formulate our generalized electron transport description. 
Such a development entails: (a) postulating the particular continua and 
field variables that form the theory; (b) constraining the variables to 
satisfy classical laws of physics such as those of conservation, electro-
magnetism, and thermodynamics; and (c) proposing appropriate mate-
rial response functions to quantify the reactions of the defined continua 
to imposed forces. The most important equation that results from steps 
(a) and (b) is the expression of linear momentum balance in the electron 
gas that takes the form: 

mn
dnu
dt

= − q∇φnDG + qEn (1)  

where ΦnDG ≡ ψ − φnDG (2)  

φnDG = φn −
2
s
∇(bn∇s) s ≡

̅̅̅
n

√

defines the DG electrochemical potential [1]. In these equations mn is the 
electron mass, n is the electron density, u is the electron gas velocity, En 

is the force (per charge) exerted by the lattice on the electron gas, Ψ is 
the electric potential, φn is the DD chemical potential, and bn is the DG 
coefficient. For most situations the inertia term on the left side of (1) is 
negligible in which case the theory simplifies considerably. 

For the present paper the crucial material response function is an 
expression for En. In DD theory, this electron-lattice interaction force is 
treated as local and instantaneous, being proportional to the average 
electron velocity and with the proportionality constant being the inverse 
mobility. To account for non-local scattering effects of either classical 
(Fig. 1b) or quantum (Fig. 1c) origin we here add in a velocity gradient 
correction. For reasons of rotational invariance we assume a Laplacian 
so that the material response function describing the electron-lattice 
interaction force is: 

nEn(u) = −
nu
μn

+ γnn∇2u = −
nu
μn

+ γnn[∇(∇ • u) − ∇ × ω ] (3)  

where ω ≡ ∇× u  

where ω is the vorticity, γn is a material parameter gauging the strength 
of the gradient effect in the gas, and the second equality follows from a 
vector calculus identity. Inserting this function into (1) results in a 

corrected DD or DG theory which we correspondingly refer to as either 
velocity-gradient (VG) or generalized-gradient (GG) theory. 

3. FET analysis 

We begin with a scaling analysis in order to clarify the flow regime 
encountered in a typical FET. To this end, it is readily shown that the 
relevant length scales of the FET problem are the gate length L, the 
depletion layer width Ldepl

D , the inversion layer thickness Linv
D , the DG 

length scale λDG ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
qbn/kBT

√
and the VG length scale λVG ≡

̅̅̅̅̅̅̅̅̅μnγn
√ . 

Comparing the relative sizes we conclude the following: (i) Because Ldepl
D 

is not small compared to L, the full 2D electrostatics should be solved; 
(ii) because λVG is often larger than Linv

D , DD/DG theory is typically 
inappropriate and the velocity-gradient correction in (3) should be 
included; and (iii) because λDG is typically much less than Linv

D and λVG, 
for most purposes one can use VG rather than GG theory to analyze the 
FET problem. 

On the basis of the foregoing analysis we now apply VG theory to a 
long-channel Si FET under low-field conditions. We assume diffuse 
scattering at the Si-SiO2 interface and that there is no vorticity injection 
from the contacts. Solution profiles obtained from the VG simulation 
with VDS = 1V are plotted showing the electron density (Fig. 2a), the 
horizontal velocity (Fig. 2b), and the vorticity generated by the interface 
scattering (Fig. 2c). Profiles of density and velocity along a cutline across 
the boundary layer are also shown in Fig. 3a. As expected, the VG effect 
clearly produces a velocity boundary layer associated with surface 
scattering much like those depicted in Fig. 1b and 1c. 

The effect of this surface scattering on the device characteristics are 
presented in Fig. 3b where we compare IV curves for cases with full slip 
(specular scattering) and no slip (diffuse scattering). The reduction in 
current associated with Si-SiO2 interface scattering is evident. Note that 
a conventional DD treatment is identical to the specular scattering case 
except that one substitutes a “channel mobility” for the bulk mobility 
which effectively scales down the specular-scattering result to match the 
diffuse-scattering IV curve. This is qualitatively and practically effective, 
but among other things it requires making adjustments to the channel 
mobility if the physics beyond the pinch-off point is to be captured 
properly. 

4. Final comments 

Although the DD analysis of FETs is very well established and 
practically useful, we argue that its treatment of surface scattering ig-
nores the macroscopically non-local nature of this scattering and that a 

Fig. 1. Depictions of scattering and average velocity profiles for flow situations near surfaces: (a) ordinary fluid mechanics; and electron flows with (b) a long mfp or 
(c) a long deBroglie wavelength. 
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proper formulation should include a gradient correction in the material 
response function characterizing the electron-lattice interaction. Intro-
ducing such a correction leads to the governing PDEs having an addi-
tional solution variable, namely, the vorticity. Applied to analyzing an 
FET we find the expected qualitative behavior. It is not clear if this 
approach has practical value for analyzing FETs, but a similar correction 
is expected to also be important for high-field and nanodevice situations, 
and its inclusion will be studied in future. 
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Fig. 2. Field plots of (a) electron density, (b) horizontal velocity, and (c) vorticity inside a Si FET with VDS = 1 V and VGS = 1 V as computed using VG theory.  

Fig. 3. Plots of (a) cutlines across the channel in the FET of Fig. 2, and (b) the 
IV curves of the FET with VGS = 1 V as computed assuming full slip (specular 
scattering) or no slip (diffuse scattering). 
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