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A B S T R A C T

In this work, we present physics-based numerical modeling of experimental time-dependent optical second
harmonic generation data from an oxide/semiconductor (SiO2/Si) interface. A comprehensive numerical
solution to the Poisson–Boltzmann equation has been developed here, using the Newton–Raphson method
at different time instances. It incorporates the trapping behavior of photo-excited charge carriers at the silicon
dioxide/silicon (SiO2/Si) interface, within the silicon dioxide (SiO2) and at the SiO2 surface, in order to
model the second harmonic photon count data obtained from our in-house experimental setup. This yields a
quantitative analysis of the SiO2/Si interface, oxide, and surface charge densities, and provides a contact-less
and non-invasive optical technique for oxide/semiconductor interface characterization.
1. Introduction

Contactless and non-invasive characterization of insulator/
semiconductor interface can facilitate the development of a range of
important semiconductor devices. Optical second-harmonic generation
(SHG) is a sensitive technique well suited for characterizing such
layered structures. The dependency of SHG on the doping concen-
tration in silicon (Si) [1], silicon dioxide (SiO2) thickness [2], and
measuring conduction band offset at the Si/SiO2 interface [2] has
demonstrated its potential and advantages over traditional capaci-
tance/conductance as well as X-ray Photoemission Spectroscopy (XPS)
and Internal Photoemission (IPE) methods for in-situ characterization.
Mapping of carrier dynamics [3] and trapped charge [4–6] have also
been demonstrated using this technique. While SHG based semiconduc-
tor/dielectric interface, specifically Si/SiO2, characterization has been
under development [7–11], the method is still not standardized enough
to allow easy extraction of quantitative interface characteristics. This is
due in part to the absence of models that are handy yet comprehensive.
The pioneering effort by Mihaychuk et al. [7], uses an elementary
surface charge model. Neither this, nor the following efforts from
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Damianos et al. [12] and Ionica et al. [13], include interface charge
density, or the spatio-temporal dependency of the oxide trapped charge,
which are seen to be significant in our experimental samples. The
latter two analyses [12,13] are based on matching the time variation of
SHG with that of the square root of the interface electric field. Hence,
these models lack a direct correlation of the SHG with the trapped
charges. Here we present a comprehensive numerical model that solves
the Poisson–Boltzmann equation using the Newton–Raphson method
in a time stepped iterative approach to mimic the time-dependent
second harmonic data obtained from our in-house experimental setup.
It enables us to analyze the spatio-temporal profile of the interface
charge density at SiO2/Si interface along with the SiO2 surface and
oxide charge density.

The SHG process involves doubling the frequency of incident light,
as a nonlinear or non-centrosymmetric medium converts the cumula-
tive energy of two photons of the incident beam into a single pho-
ton [14,15]. Silicon is a centrosymmetric material. The nonlinearity or
non-centrosymmetric nature arises due to the broken symmetry at the
surface of silicon and at the interface with SiO2 [5,7].
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Fig. 1. Time dependent second harmonic (SH) photon counts from experiment, fitting
of semi-empirical Eq. (1) to extract various trapping time constants. The schematic of
SHG characterization technique captured in the inset.

2. Basic experiment and observations

An RCA cleaned 1∼5 Ω-cm (N𝐴 ≈ 4 × 1015 cm−3) p-silicon (100)
substrate is used for thermal oxidation (dry oxidation at 850 ◦C for
10 s using rapid thermal process) to grow ∼2.96 nm SiO2 (measured
using ellipsometer). An ultrafast laser beam (𝜆 = 800 nm, average
power = 100 mW, pulse width ≈ 120 fs, pulse repetition rate = 1 kHz,
spot diameter = 1 mm) is focused on the grown SiO2/Si sample with
an incident angle of 45◦ (schematically shown inset of Fig. 1). The
generated second harmonic of the incident ultrafast pulses is recorded
over time (shown in Fig. 1 Second Harmonic Generation (Experiment)).
The entire experimental setup is designed and developed by us within
our laboratory and will be discussed in detail elsewhere [16].

A trend of gradually increasing optical second harmonic intensity
I(2𝜔)(t) from the sample has been observed (Fig. 1). The generated
second harmonic intensity from the SiO2/Si interface, tends to saturate
over time. The explanation for the time varying signature of the second
harmonic photon counts is provide in the following section.

3. Explanation

A phenomenological explanation for the time dependent second har-
monic generation is depicted through Fig. 2 and described as follows:
As the ultrashort pulses irradiate the sample, the carries (electrons)
close to the SiO2/Si interface get excited through multi-photon process
(depicted using red dashed arrows in Fig. 2). Within a short duration
of time (corresponds to the time constant 𝜏1 = 0.98 s in Eq. (1)),
some of these photo-excited electrons are getting trapped at the SiO2/Si
interface states (depicted in Fig. 2 through ‘Electron Trapping at the
Interface’). The continuous irradiation generates the exited carriers
throughout the experiment and as the trap levels are filled at the
SiO2/Si interface few of these electrons surmount the SiO2 conduction
band barrier and get trapped into the available trap states inside the
oxide and SiO2 surface (corresponds to the time constants 𝜏2 = 7.81
s and 𝜏3 = 85.61 s accordingly in Eq. (1) and depicted in Fig. 2 as
‘Electron Trapping within the Oxide’ and ‘Trapping of Photoexcited
Electrons at Surface States’ respectively). Continuous trapping of photo
excited electrons at the SiO2/Si interface, within the SiO2 and at the
SiO2 surface creates a time dependent electric field in the direction of
the SiO2 surface from SiO2/Si interface, described as 𝜉0−(𝑡) in Fig. 2.
The electric field 𝜉0−(𝑡) increases over time due to the charge separation
as the photo-excited electrons further getting trapped. The rise in the
2

Fig. 2. Schematic representation of the trapping of electrons excited through the
multiphoton process that has been simulated here.

electric field 𝜉0−(𝑡) results in an increase in the second harmonic photon
counts (shown in experimental SHG in Fig. 1). The phenomena is called
electric field induced second harmonic generation (EFISHG). Over time
the electric field 𝜉0−(𝑡) and the EFISHG starts to saturate as the available
states are getting filled by the excited electrons. A semi-empirical
equation of the form:

𝐼 (2𝜔) (𝑡) = 𝐴0 + 𝐴1𝑒𝑥𝑝
(

−𝑡
𝜏1

)

+ 𝐴2𝑒𝑥𝑝
(

−𝑡
𝜏2

)

+ 𝐴3𝑒𝑥𝑝
(

−𝑡
𝜏3

)

(1)

is first used to fit the experimental time-dependent SH intensity data,
where the parameters 𝜏1, 𝜏2 and 𝜏3 are understood to represent the
trapping time constants for the time dependent trapped charges at the
SiO2/Si interface

(

𝑄𝑇 𝑟𝑎𝑝𝑝𝑒𝑑
𝑖𝑡 (𝑡)

)

, within the oxide
(

𝑄𝑇 𝑟𝑎𝑝𝑝𝑒𝑑
𝑜𝑥 (𝑡)

)

, and

at the surface of SiO2

(

𝑄𝑇 𝑟𝑎𝑝𝑝𝑒𝑑
𝑠𝑡 (𝑡)

)

respectively. Their values signify
the time taken to fill a portion (63%) of the available trap states at
various positions mentioned above. The time constants are fed into the
numerical solver described in the following section, to calculate the
time-dependent trapped charge and electric field 𝜉0−(𝑡).

4. Numerical modeling and discussion

We have developed an algorithm to solve the Poisson–Boltzmann
equation using the Newton–Raphson method at different time instances
with the aforementioned trapped charges at that time instant. The
algorithm is depicted through the flowchart shown in Fig. 3.

The upper half of the flowchart provides us with an initial solution
to the Poisson–Boltzmann equation and the electric field at the interface
at t = 0 s or before laser irradiation. The lower half begins with
discretization of the entire (experiment or simulation) time window in
steps (𝛥t), and by defining the trapping probabilities, and calculating
the spatio-temporal profile of the trapped charges from rate equa-
tions. Then the Poisson–Boltzmann equation is solved with the time
dependent trapped charges at each time instance.

We note that the instantaneous distribution of the photo-generated
carriers inside the silicon is not considered here, as the 1 kHz pulse
repetition rate and 120 fs pulse width in our case ensure a time
delay of 0.99999999988 ms between two consecutive pulses. This is
much larger than the lifetime of photo-generated carriers in the silicon
region. Trapped charges have much larger lifetime or detrapping time,
and are therefore the only contributor to the EFISHG here. These
charges obviously create a difference in quasi-Fermi levels between the
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Fig. 3. Flowchart of the time stepped numerical solver that captures the time dependent trapping of photo excited electrons at the SiO2/Si interface, within the oxide and at the
surface states of SiO2.
bulk silicon region and oxide surface. Based on the aforementioned
timescales, a Boltzmann distribution for the carriers with quasi-Fermi
levels solves the Poisson–Boltzmann equation in between the laser
pulses. In contrast to this, the 80 MHz pulse repetition rate that has
been used in the previously reported literature demands consideration
of transient carrier distributions.

Now, in terms of validation of the numerical solver by benchmark-
ing to standard TCAD software, the available possibility was a steady-
state comparison with predefined fixed interface and oxide charges. A
3

side by side comparison of the results using our technique with the
result from ‘Sentaurus TCAD’ is shown in Fig. 4. The interface charge
𝑄𝑖𝑡{𝜙} and potential profile 𝜙{𝑄𝑖𝑡} in our model are intertwined in
a self-consistent manner to capture the occupation probability of the
interface states at different time instances. We have considered an
interface trap state distribution similar to Thoan et al. [17] because
of the similarity of their fabrication process to ours.

The Poisson–Boltzmann solver yields time evolution of the electric
field 𝜉 (𝑡) and eventually the electric field induced second harmonic
0−
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Fig. 4. Comparison of simulation outcomes from Synopsys TCAD (Sentaurus Device)
and our numerical solver for the validation of our solver.

Fig. 5. Comparison of experimental time dependent second harmonic photon counts
and prediction from simulation result using our time stepped numerical solver.

Table 1
Extracted interface, oxide and surface charge densities.

Time (s) Q𝑖𝑡 (cm−2) Q𝑜𝑥 (cm−2) Q𝑠𝑡 (cm−2)

t = 0 1.7802 × 1011 2.0 × 1011 −1.2902 × 1012

t = 100 4.1414 × 1011 0.7278 × 1011 −1.3335 × 1012

The parameter values and spatio-temporal profiles of trapped charge density may be
obtained by sending an email request to the corresponding author.

generation (EFISHG) intensity (shown in Fig. 5) by using the following
in Eq. (2):

𝐼 (2𝜔) (𝑡) = 𝜂
[{

𝜒 (2𝜔) + 𝜒 (3𝜔)
|

|

𝜉0−(𝑡)||
}

𝐼 (𝜔) (𝑡)
]2 (2)

where 𝜒 (2𝜔) and 𝜒 (3𝜔) denotes the second order surface dipole and third
order bulk dipole susceptibility respectively at SiO2/Si interface.

The initial values of charge density used in the simulator, and the
charge densities at a final later time, are presented in Table 1. In the
table, t = 0 s and t = 100 s conditions accordingly represent the charge
densities before laser pulse irradiation, and charge densities with the
photo excited trapped charges after 100 s of irradiation.
4

5. Conclusion

In summary, our developed numerical model successfully corre-
lates the experimental SHG results with a quantitative analysis of
the SiO2/Si interface charge, the spatio-temporal profile of the oxide
trapped charge, and the SiO2 surface charge densities. Quantitative
analysis of these trapped charge densities could pave the way for the
development of a contactless and non-invasive optical second harmonic
based oxide/semiconductor interface characterization tool for this and
other material systems of interest. Our own efforts on a high-k/Si will
be presented elsewhere [16]. Alongside the quantitative analysis of
charge densities, through our model and experimental data, we can
determine the direction of band bending at an oxide/semiconductor
interface on a contactless sample.
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