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A B S T R A C T   

In semiconductor samples with a low density of free charge carriers the current response to an intense elec-
tromagnetic pulse is weak and can be treated as a perturbation in the finite-difference-time-domain calculation of 
the electromagnetic field. Up to first order the electric field that drives the particles does not depend on their 
density and the particles can be simulated independently. This opens the door for massively parallel Monte Carlo 
simulations that can be processed efficiently on a computer cluster and a large number of particles can be 
simulated resulting in a very low noise level. By this full-band Monte Carlo finite-difference-time-domain 
approach the generation of higher harmonics in p-doped silicon at cryogenic temperatures is investigated. It is 
found that the higher harmonics are mostly due to the warped valence bands, which are discretized on adaptive 
unstructured tetrahedral grids in the k-space to avoid numerical artifacts.   

1. Introduction 

Intense electromagnetic THz pulses lead to a nonlinear response of 
the particle gas in semiconductor materials and result in the generation 
of higher harmonics [1]. These higher harmonics, which are due to the 
nonparabolic band structure and energy-dependent scattering, can be 
used to probe properties of the semiconductors [2]. Here we theoreti-
cally investigate experiments where an intense THz pulse passes through 
a weakly p-doped silicon layer (thickness 275μm) where the beam is 
normal to the [001] surface of the layer and the linearly polarized 
electric field is aligned with the [100] direction. The sample is kept at a 
temperature of 10K and the hole density is much lower than the 
acceptor concentration of 5 × 1016cm− 3 due to impurity freeze-out. 
While the pump field dependence indicates that additional carriers are 
generated during the pulse (attributed to impact ionization [3]), here we 
assume a constant total population of holes, which still captures the 
main aspects of the harmonic generation. In measurements the intensity 
of the 3rd harmonic is many orders of magnitude lower than the 
fundamental one confirming that the hole density is indeed very low. 

2. Simulation Model 

Because of the rather large diameter of the beam and that the 

measured harmonics are dominated by the high intensity at the beam 
center the electromagnetic field can be approximated for the simulation 
by a linearly polarized plane TEM wave. The wave propagates into the 
positive z direction and the electric and magnetic fields are aligned with 
the x and y directions, respectively. In this case Maxwell’s equations 
reduce to [4] 

−
∂Hy

∂z
= Jx + εrε0

∂Ex

∂t
, (1)  

∂Ex

∂z
= − μ0

∂Hy

∂t
. (2) 

Hy is the y component of the magnetic field strength, Ex the x 
component of the electric field strength, Jx the x component of the 
current density, ε0 the electric field constant of the vacuum, εr the 
relative permittivity, and μ0 the magnetic field constant of the vacuum. 
A longitudinal electric field which could occur due to an inhomogeneous 
distribution of the holes in the silicon layer is neglected, because the net 
space charge density of the ionized acceptors and holes is very low [5]. 

The hole current density in the silicon layer caused by the transverse 
electric field is proportional to the low hole density and it can be treated 
as a perturbation in Maxwell’s equations. It is multiplied with the 
dimensionless parameter λ [6] 
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and the fields are expanded into a power series w.r.t. λ 

Hy = H(0)
y + λH(1)

y +⋯, (5)  

Ex = E(0)
x + λE(1)

x +⋯. (6) 

The zero order fields are the solutions of 
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where the current density does not occur, because it is multiplied by λ. 
The first order fields satisfy 
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where J(0)x appears, which is calculated based on E(0)
x which does not 

depend on J(0)x . 
This makes it possible to decouple the pump-pulse propagation and 

the response of the hole gas, which greatly reduces the computational 
cost of the simulations. The electromagnetic field is calculated by the 
finite-difference-time-domain (FDTD) method [7,5] and the hole current 
density by Monte Carlo (MC) simulations [8]. The algorithm consists of 
three steps:  

1. The electromagnetic pulse is simulated for a vanishing hole density 
by a 1D FDTD solver with perfectly absorbing boundaries and the 
electric field in the silicon layer is recorded as a function of location 
and time. This yields E(0)

x (z, t).  
2. For this electric field transient bulk simulations are performed by a 

full-band MC code [9], where the movement of the holes in z di-
rection is neglected due to the large wave length and the particles can 
be simulated independently w.r.t. their position in the real space. 
Jobs are started in parallel for all the boxes of the real space grid in 
the silicon region. This yields J(0)x (z, t).1  

3. A FDTD simulation with the current density obtained in the second 
step and a zero source field is performed, where the electric field at 
the fundamental frequency caused by the current density is much 
smaller than the one due to the THz source, and a first order 
perturbation approach suffices. This yields E(1)

x (z, t). 

The transmitted electric field is obtained with λ = 1 and |E(0)
x |≫|E(1)

x |

≫|E(2)
x | by E(0)

x + E(1)
x . Its spectrum is given by the absolute square of its 

Fourier transform and does not depend on the position in the vacuum. 
In the case of holes the warped valence bands have a strong impact 

on the generation of higher harmonics and a full-band MC simulation is 
required, which is described in detail in Ref. [9]. The band structure is 
calculated by the nonlocal empirical pseudopotential method including 
spin–orbit coupling [10]. For each individual valence band an 

unstructured tetrahedral mesh is generated that satisfies certain quality 
criteria [11,9]. The energy is linearly interpolated within a tetrahedron 
and continuous when moving to an adjacent tetrahedron. The mesh fills 
the complete irreducible wedge of the first Brillouin zone and has the 
necessary symmetries on the surface of the wedge to ensure a continuous 
energy band when changing from one Brillouin zone into the next [9]. 

The interpolated dispersion relations of the valence bands have to be 
sufficiently smooth to avoid spurious generation of higher harmonics. 
Since the interpolation is only piecewise linear, a fine grid is required. 
The grid resolution is controlled by a relative error criterion for the 
energy difference between the interpolated energy and the energy 
calculated directly by the pseudopotential method, where the difference 
must be less than 2% of the energy or less than 50μeV, whatever limit is 
larger. This results in a very fine grid close to the Γ point (Fig. 1). This 
high resolution at low hole energies is necessary to avoid problems at 
low temperatures. In addition, the grid has to satisfy two further criteria. 
The maximal length of an edge of a tetrahedron is limited and the vol-
ume to surface ratio must be sufficiently large to avoid flat tetrahedra. 
The number of k-grid points and tetrahedra in the irreducible wedge is 
given in Table 1. We have checked by simulations with finer grids that 
the k-space mesh has a negligible impact on the results. 

3. Results 

A spacing of 0.25μm and a time step of 0.417fs is used to resolve the 
higher harmonics in space and time. The number of boxes in the silicon 
layer is 1100 and in each box 125,000 particles are simulated resulting 
in a total of 1.375 × 108 particles. The CPU time for a single box is about 
8 h and the total CPU time about a year. The CPU time of the inde-
pendent MC simulations is large compared to the FDTD simulations 
which take only seconds, and the MC jobs are processed by a batch 
system to make the best use of the computer cluster. The wall clock time 
for the complete simulation is less than a day. 

The electric field of the source pulse is given by a sinusoidal carrier 
wave with a frequency of 1.29THz and a Gaussian envelope function 
(Fig. 2). A fraction of the pulse is reflected at both interfaces between the 
sample and vacuum leading to a partially standing wave in the vacuum 
at the source side and in the sample. The maximum value of the 
magnitude of the electric field over time is shown in Fig. 3, and the 
maximal electric field strongly varies in the sample. This result clearly 
shows that the reflection of the wave at both interfaces has a strong 
impact on the amplitude and phase of the spectral components as a 

Fig. 1. K-space grid of the heavy-hole band of silicon for kz = 0 near the Γ point 
[9]. a0 is the lattice constant of silicon. 

1 In the calculation of the hole velocity the magnetic field is neglected, 
because the Lorentz force is less than a percent of the electric force due to the 
low velocity of the holes compared to the speed of light in silicon. 
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function of position and that a transient device simulation of the elec-
tromagnetic field is necessary. 

The higher harmonics are due to the current response of the holes. 
Since the zero order electromagnetic field is strongly inhomogeneous in 
the silicon layer (Fig. 3), the current response has to be calculated as a 
function of space and time as well. In Fig. 4 the envelope functions of the 
velocity response and electric field at the first minimim of the maximal 
electric field inside the silicon layer (z = 120μm) and at the last 
maximum (z = 341μm) are shown. At the minimum the electric field 
and the velocity show a small echo after 100ps. Due to the larger electric 
field, the velocity response at z = 341μm is much larger and more 
nonlinear with stronger harmonics. The maximum of the electric field is 
shifted by about 7ps. This shift is smaller for the hole velocity, because in 
the case of the larger electric field the hole gas becomes hot and the 
velocity is reduced by the increased scattering. The asymmetry of the 
velocity response is due to the large energy relaxation time at this low 
lattice temperature and the mean energy is larger during the falling edge 
than during the rising edge. This complex spatiotemporal behavior has 

to be taken into account, when the transmitted electromagnetic field is 
calculated. In addition, this ensures that all interference effects are 
included in the wave calculation. 

In the experiments the intensity of the transmitted electric field is 
measured as a function of the frequency. The intensity is the absolute 
square of the Fourier transform of the transmitted electric field and at 
odd multiples of the fundamental frequency additional peaks occur. 
Since the intensity of the fundamental frequency is many orders of 
magnitude larger than the higher harmonics, filters have to be used to 
suppress it in the measurement of the higher harmonics. This makes it 
difficult to determine the absolute magnitude of the higher harmonics 
and the main result is the ratio of the 3rd and 5th harmonic. In the first 
order perturbation calculations the higher harmonics are proportional to 
the square of the hole current density and thus proportional to the 
square of the hole density, which cancels when the ratio of the har-
monics is calculated. Therefore, the absolute value of the hole density 
does not matter as long as its value is orders of magnitude smaller than 
the acceptor concentration and a first order perturbation approximation 
holds. In Fig. 5 the simulated intensity is shown and the ratio of the 3rd 
and 5th harmonic is 313. The resultant noise is very low due to the large 
number of simulated particles and their independent simulation, and 
even the 9th harmonic is clearly visible in Fig. 5. 

In Fig. 6 the result of a transient bulk MC simulation is shown, where 
the electric field is given by the source field. The intensity is calculated 
based on the time-dependent velocity. The resultant ratio of the 3rd and 
5th harmonic is 15.4 and much smaller than in the case of the FDTD MC 

Table 1 
Number of grid points and tetrahedra in the irreducible wedge of relaxed silicon 
for the heavy-hole (hh), light-hole (lh) and split-off (so) bands.  

Band k-points tetrahedra 

hh 3082 13111 
lh 2209 9354 
so 1284 5226  

Fig. 2. Electric field of the THz pulse generated by the source for an amplitude 
of 28 kV cm− 1. 

Fig. 3. Maximum of the pump-pulse electric field over time versus location for 
a source amplitude of 28kV cm− 1. 

Fig. 4. Envelope functions of the average hole velocity (black lines) and elec-
tric field times a mobility of 6.5 × 105cm2 V− 1 s− 1 (red lines) for two different 
positons in the silicon layer. 

Fig. 5. Intensity of the transmitted electric field for a source amplitude of 28kV 
cm− 1 and frequency of 1.29THz. 
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simulation, showing that a simple bulk MC simulation is not sufficient to 
quantitatively describe the generation of higher harmonics in the silicon 
layer and the full wave propagation has to be taken into account. 
Furthermore, results are shown for simulations with a parabolic band 
with a similar effective mass as the full bands. The higher harmonics are 
reduced by orders of magnitude showing that their generation is mostly 
due to the warped valance bands. 

4. Conclusions 

In the case of a weakly doped semiconductor sample the current 
response of the particle gas to an intense electromagnetic pulse can be 
treated as a perturbation, and the particles in the MC run can be simu-
lated independently. This enables efficient parallelization on a computer 
cluster, because more than 99% of the wall clock time are spent for the 
MC simulations. Due to the large number of simulation particles that can 
be processed within hours of wall clock time and the noiseless electric 
field on which the MC simulations are based, the noise level of the 
transmitted electric field is very low. 

At a lattice temperature of 10K the generation of higher harmonics is 
mostly due to the warped valence bands and to a lesser extend caused by 

the energy dependent scattering. 
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