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A B S T R A C T

With scaling, physics-based analytical MOSFET compact models are becoming more complex. Parameter
extraction based on measured or simulated data consumes a significant time in the compact model generation
process. To tackle this problem, ANN-based approaches have shown promising performance improvements in
terms of accuracy and speed. However, most previous studies used a multilayer perceptron (MLP) architecture
which commonly requires a large number of parameters and train data to guarantee accuracy. In this article,
we present a Mixture-of-Experts approach to neural compact modeling. It is 78.43% more parameter-efficient
and achieves higher accuracy using fewer data when compared to a conventional neural compact modeling
approach. It also uses 43.8% less time to train, thus, demonstrating its computational efficiency.
1. Introduction

Compact modeling acts as a bridge between device fabrication and
circuit design. It has two main goals: computational efficiency and
accuracy. Conventionally, to achieve such contradicting goals, analyt-
ical approximations and empirical fitting parameters have been used.
Threshold-voltage-based models had issues in solving harmonic distor-
tion analysis which took a considerable time for surface-potential-based
models to solve [1].

Since the conventional compact models are technology dependent,
it could take years to develop new models for upcoming devices.
Hence, there is an immediate need for fast and efficient compact
model generation. The use of artificial neural network (ANN)-based
compact modeling, or neural compact modeling, to increase accuracy
and shorten the model generation period has been studied in the
literature.

It has been shown that the performance of ANN-based compact
modeling can be improved through appropriate data preprocessing and
conversion function in [2,3]. Other works tried to solve the nonphysical
behavior of simple MLP-based neural compact models by incorporat-
ing device physics into network architecture and loss function [4,
5]. Despite the promising results, building ANN simply by stacking
fully-connected layer to achieve reasonable accuracy can increase the
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number of parameters, memory usage, and computational cost. Re-
quirements such as large data set and longer training time make them
unattractive for circuit simulation applications (e.g. SPICE).

In this paper, we propose Mixture-of-Experts (MoE) to offset the
aforementioned limitations by sub-categorizing the problem into dif-
ferent operation regimes and solving them using dedicated experts.
Compared to the baseline ANN, our MoE approach showed 78.43%
better parameter efficiency, 56.69% less training data, 79.97% re-
duction in the number of multiply-accumulate (MAC) operations, and
43.8% reduction in training time to achieve the same target mean-
squared-error (MSE) of 0.0025. We found that the MoE approach is
robust, easily expandable, and efficient for neural compact modeling
applications.

2. Mixture-of-experts for neural compact modeling

The Mixture-of-Experts is based on the divide and conquer principle,
which was first introduced in [6]. The MoE works on the idea that the
whole input space can be partitioned into smaller regimes of distinct
characteristics. The MoE systems have been applied in various research
fields, such as speech recognition [7] and aerodynamic design [8], and
their performance has been verified.

The main idea of MoE can also be effective for device modeling if
the input regimes of a device have meaningful distinctions as in the
vailable online 4 November 2022
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Fig. 1. Mixture-of-Experts based neural compact modeling. The gating network cate-
gorizes the input vector and assigns weights to the output of each expert network. The
weighted sum of the outputs is passed on to the next level.

case of MOSFETs. For accurate MOSFET modeling, each of the distin-
guishable regions and their sub-characteristics, including gate-induced
drain leakage, short-channel effect, needs to be precisely modeled. If
all of the distinct MOSFET characteristics are simultaneously learned
via a single large ANN, the training objectives of the sub-regions may
conflict with each other, and the performance of the whole ANN-
based model can be limited. We address this conflicting sub-tasks
optimization by automatically partitioning the device characteristics
and assigning specialized local models for each partition.

The entire network consists of three-level mixture-of-experts as
shown in Fig. 1. At each level, the outputs of the expert networks are
provided with importance weights by their gating network. The gating
network learns automatically to assign larger weights to the more
appropriate experts based on the input to improve the performance
of the entire network. The experts gradually learn to focus more on
their own specialized regions. In our experiments, all experts and gating
networks are simple feed-forward neural networks, where the output of
gating networks is softmax, assigning mixing weights to each expert.
We denote 𝑔𝑘(𝑥) and 𝑒𝑘𝑖 (𝑥) as the output of the gating network and the
output of the 𝑖th expert network at the 𝑘th level for a given input vector
𝑥, respectively. The final embedding vector 𝑓𝑘(𝑥) at each level is the
linearly weighted sum of each expert’s output, expressed as follows:

𝑓𝑘(𝑥) =
𝑁
∑

𝑖=1
𝑔𝑘(𝑥)𝑒𝑘𝑖 (𝑥) (1)

where 𝑁 is the number of experts at the same level and ∑

𝑖 𝑔
𝑘(𝑥) = 1.

In the hierarchical MoE, the information is processed sequentially from
the bottom level, and the additional input vector, which is necessary to
assign importance weights to the experts, is fed at each level.

The final embedding vector (weighted sum of each experts’ output)
is a fixed dimensional embedding vector which contains information
on all the modeled MOSFET characteristics. This is passed on to the
next gating network where different experts take control for a different
input regime.
2

Fig. 2. Illustration of conflicting gradients. The final weight 𝑤∗
𝑡+1 is the average of the

other three weights. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

2.1. Analytical formulation

As mentioned above, the input regime of a device consists of very
distinctive sub-regions. The training objectives of these unique sub-
regions may conflict with each other if trained simultaneously and can
lead to a phenomenon called conflicting gradients.

𝑤∗
𝑡+1 = 𝑤𝑡 +

1
𝑘

𝑘
∑

𝑖=1
𝑔(𝑖) (2)

We denoted 𝑤𝑡 as the parameters of the network at the current
training iteration, 𝑤(𝑖)

𝑡+1 as the optimal update for each sub-region, and
𝑘 is the number of different sub-regions in a mini-batch. We want to
find out the direction of the next parameter update by measuring the
gradients of the loss function with respect to the weights using samples
in a mini-batch. As shown in Fig. 2, let us assume we have three unique
sub-regions in one training mini-batch: the optimal gradients for each
sub-region can be substantially different. For example, data points from
the saturation region of a short channel device would tend to update the
whole parameters in the green direction, while another group of data
points from the linear region of another narrow width device would
prefer to update the network in the yellow direction, and the last set of
data points from the cut-off region would direct the weight updates in
the blue direction. However, in gradient-based optimization, the update
direction for the current iteration is determined by simply averaging
the gradients for the samples in a mini-batch, which inevitably leads
to sub-optimal update for all sub-regions and eventually degrades the
performance of neural compact modeling. This phenomenon is very
common in other ML tasks. For examples, in the long tailed problems,
gradient from the major class will dominate the gradients from the
minor class and the final model will have poor performance on the
minor classes. We observe this conflicting sub-task problem can partic-
ularly more matter in device modeling because of its unique sub-region
nature. Thus, we proposed a new architecture, mixture of experts,
using device domain knowledge as an inductive bias and validated it
experimentally. Our MoE approach can be more parameter and sample
efficient compared to the baseline MLP.

3. Experiments and results

We performed experiments by while changing the structure of the
baseline MLP and the proposed MoE method in various ways in order
to figure out how the number of parameters and network architecture
affect the accuracy, the amount of data required for training, and the
training time. The dataset was generated from the SPICE simulation
of 45 nm PTM HP model card [9]. In our discussion, 𝑒𝑘1(𝑥) is denoted
by blue, and 𝑒𝑘2(𝑥) by red. Intermediate shades represent a mixed
contribution from both experts.
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Fig. 3. Representation of categorized regions: (a) W vs L and (b) 𝑉𝑇𝐻 vs L for short
and long gate length regimes.

3.1. WLT gating

At the WLT gating network, device characteristics were sub-
categorized according to gate width (W), gate length (L), and tempera-
ture (T) by the experts. 𝑒11(𝑥) expertized in short-channel effects, while
𝑒12(𝑥) was responsible for long-channel lengths as seen from Fig. 3(a).
Fig. 3(b) shows threshold voltage (𝑉𝑇𝐻 ) vs varying gate length, where
the decreased short-channel 𝑉𝑇𝐻 was modeled primarily by 𝑒11(𝑥), while
the long-channel 𝑉𝑇𝐻 was modeled by 𝑒12(𝑥). The reverse narrow-width
effect was negligible, and thus a separate expert was not required. Our
MoE approach is robust enough to accommodate additional experts to
model more non-linear MOSFET characteristics if required.

3.2. 𝑉𝐺𝑆 Gating

The embedding vector from the WLT gate was combined with 𝑉𝐺𝑆
and 𝑉𝐵𝑆 to create the input vector for the 𝑉𝐺𝑆 gating network. 𝑒21(𝑥) was
designed to take 𝑉𝐺𝑆 as an input to capture the approximately linear
or quadratic dependence of 𝐼𝐷 on 𝑉𝐺𝑆 in the ON-state, while 𝑒22(𝑥)
was designed to take exp(𝑉𝐺𝑆 ) as the input to model the exponential
dependence of 𝐼𝐷 on 𝑉𝐺𝑆 in the sub-threshold region (Fig. 4). The
transition region exhibited a smooth continuous change in prioritizing
the expert based on the operation region.

3.3. 𝑉𝐷𝑆 Gating

The final 𝐼𝐷 was predicted by the gating network and the experts
which were in control of 𝑉𝐷𝑆 regions, (i.e., cut-off, linear, or saturation
region). While 𝐼𝐷 in the cut-off and the saturation regions do not heav-
ily depend on 𝑉 , the secondary effects introduce a 𝑉 dependency.
3
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Fig. 4. Categorized 𝐼𝐷 − 𝑉𝐺𝑆 regions: 𝐼𝐷 ∝ exp(𝑉𝐺𝑆 ) in OFF region, and 𝐼𝐷 ∝ 𝑉𝐺𝑆 in
ON region.

Fig. 5. Categorized 𝐼𝐷 − 𝑉𝐷𝑆 regions: 𝐼𝐷 ∝ exp(𝑉𝐷𝑆 ) in the cut-off region, 𝐼𝐷 ∝ 𝑉𝐷𝑆 in
the linear region, and 𝐼𝐷 is weakly dependent on 𝑉𝐷𝑆 in the saturation region.

Table 1
Conventional ANN vs MoE approach.

Conventional MoE Gain [%]

# of parameters 2049 442 78.43
# of data 47800 20700 56.69
Multiply-accumulate 1792 359 79.97
Training time [s] 66.2 37.2 43.80

∗The above data were calculated at MSE = 0.0025.

While the leakage current in the cut-off region shows a exp (𝑉𝐷𝑆 ) depen-
dency, channel length modulation, drain-induced barrier lowering, and
substrate current induced body effect in the saturation region depend
on 𝑉𝐷𝑆 . Hence, the gating network assigned 𝑒31(𝑥) to model the cut-off
region and 𝑒32(𝑥) to model the linear region, while the saturation region
was modeled by both the experts (Fig. 5).

In our method, the choice of gating decisions was continuous
rather than discrete. Any changes of physical phenomena, (i.e. the lin-
ear/saturation regions in the transistor), were not strictly partitioned,
in fact, they underwent a continuous transition. Therefore, if two
experts respectively controlled the linear and the saturation regions,
we designed the gating network to be able to continuously mix the two
experts rather than discretely select one of them.

4. Performance comparison

Fig. 6 shows that, with a similar number of parameters (𝑁𝑡𝑜𝑡𝑎𝑙), the
MoE consistently achieved higher accuracy compared to the baseline
ANN with a wide range of training data size. In Table 1, to obtain
the target MSE of 0.0025, the baseline ANN required about 2049
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Fig. 6. Comparison of test accuracy as a function of (a) the number of training data
with the similar model capacity, (b) the number of parameters on the same W, L, 𝑇
dataset.

parameters, while our MoE approach required only 442 parameters.
This contributed to a 78.43% improvement in parameter efficiency. We
also observed that the MoE approach required 56.69% less training
data than a baseline ANN. Since the experimental data is scarce in
most cases, this is an important distinction. Our approach also showed
a 79.97% decrease in the number of MAC operations and 43.8%
improvement over the baseline approach in terms of training time.

5. Conclusion

In this paper, we propose a novel MoE structure for neural compact
modeling which utilizes the fact that MOSFETs have distinct charac-
teristics for each input region. A parameter-efficient neural compact
model is demonstrated using the MoE structure where we have light-
weight experts specialized in each region rather than a single large
neural network that has to learn the entire input region. The gating
network automatically determines which particular input region each
expert will be in charge of in the end-to-end training process. We show
that the proposed MoE architecture is 78.43% more parameter-efficient
and achieves higher accuracy using fewer training data while also being
less computationally intensive.
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