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A B S T R A C T

Parameter extraction of compact transistor models is an expensive process, heavily relying on engineering
knowledge and experience. To automate such a process, we propose a novel approach, Graph-based Compact
Model (GCM), that integrates physical modeling and data-driven learning. GCM utilizes Graph Neural Networks
(GNNs) to establish the model structure, while retaining the physicality in compact models. We implement
our GCM in Verilog-A to support circuit simulations. As demonstrated with an academic 7 nm FinFET PDK,
the new approach automatically generates a GCM model within a minute, and achieves excellent accuracy and
efficiency in SPICE.
1. Introduction

Compact modeling of CMOS transistors is the essential bridge be-
tween silicon manufacturing and circuit simulations [1]. To capture
the complexity of device physics, an increasing number of model
parameters have to be introduced in the compact model, posing enor-
mous challenges in parameter extraction and simulation efficiency.
To extract model parameters of CMOS transistors, a machine-learning
based method has been proposed [2,3]. Further, the artificial neural
networks (ANNs) have been used for the compact modeling of generic
transistor behaviors [4,5]. However, without explicit physical meaning,
such artificial neural networks (ANNs) impede model scalability and
efficiency. Therefore, it is imperative to develop a compact, scalable,
and computationally efficient model for CMOS transistors.

Recently, GNNs were proposed to model dynamic systems [6–8].
GNNs describe each physical component as the graph node, and their
interactions as edges [9]. Based on GNNs, we introduce our new
method, GCM, for compact transistor modeling. For key physical pa-
rameters, they are captured by non-linear models and embedded into
the graph nodes. For many other fitting parameters, they are replaced
by neural networks to connect the nodes together. Parameter extrac-
tion, i.e., training of GCM, is data driven through back propagation,
with appropriate constraints on physical parameters to improve the
robustness. In Section 2, we explain the GCM modeling approach in
detail. We implement our GCM model in Verilog-A code to demon-
strate the circuit simulation in commercial SPICE simulator. The model
validation with an academic 7 nm FinFET PDK is demonstrated in

✩ The review of this paper was arranged by Francisco Gamiz.
∗ Corresponding authors.
E-mail addresses: agaidhan@asu.edu (A.D. Gaidhane), yu.cao@asu.edu (Y. Cao).

Section 3. Further, we demonstrate the convergence of several model
parameters during the training process. Finally, we demonstrate the
inverter VTC in SPICE simulator, and compare the simulation time and
model parameters with the BSIM model.

2. Model development

The new method of GCM converts a conventional model into a set of
nodes for key physical parameters, and connects them into a directional
graph. Fig. 1 presents the graph structure to model a transistor, with
nodes for selected physical parameters and edges for their relationships
as shown in Fig. 1. Similar as other compact transistor models, GCM
receives the input features as an vector (e.g., voltages, geometries, etc.),
and predicts the output features (e.g., 𝐼ds and its derivatives). In this
work, we develop a GCM to obtain static characteristics of FinFET at
room temperature. To obtain static characteristics, we use 𝑉𝑑𝑠, 𝑉𝑑𝑠 as
dynamic inputs and 𝐿, 𝑇𝑂𝑋 , 𝑇 as static inputs, whereas 𝐼𝑑𝑠 and its
derivatives i.e, 𝐺𝑚 and 𝐺𝑑𝑠 as output nodes.

There are two basic operations in GCM, aggregation and trans-
formation. The aggregation step computes the node value from the
input vector or its nearest neighbors, depending the graph structure.
The transformation step applies the update function to generate a new
value for each node and the output vector. The update function can
be physical equations, if the physics is clear, or neural networks for
fitting. We keep as many nonlinear relations as possible in GCM to
minimize the model size of the neural network. As with GNNs, the
vailable online 3 January 2023
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Fig. 1. The structure of graph-based compact model of FinFET. The model receives
the input features such as voltages, geometries, etc. as an vector and predicts the drain
current (𝐼ds) and its derivatives as output features.

GCM aggregates data based on the graph structure. Additionally, GCM
update function is capable of combining physical equations and neural
networks. The GCM transforms learned parameters and helps in the
prediction of 𝐼ds. Finally, we use derivatives of 𝐼ds to improve the
accuracy of our model.

To demonstrate GCM, we start from a long-channel surface-potential
based model of FinFET [10]. The surface potential for the long-channel
double-gate FET (DGFET) is given in [10] as

𝜓 (𝑥) = 𝑉 − 2𝑘𝑇
𝑞

ln
[

𝑡si
2𝐿Di𝛽

cos
(

2𝛽
𝑡si
𝑥
)]

(1)

where 𝑉 is the electron quasi-fermi potential and it is equal to 𝑉𝑠 at
the source end and 𝑉𝑑 at the drain end. 𝑞 is the electronic charge, 𝑘
is the Boltzmann constant, 𝑡si is the thickness of the channel, 𝐿Di =
√

2𝜀si𝑘𝑇 ∕𝑞2𝑛𝑖 is the intrinsic Debye length, 𝜀si is the permittivity of
silicon, 𝑛𝑖 is the intrinsic carrier density. 𝛽 is an intermediate pa-
rameter which is equal to 𝛽𝑆 and 𝛽𝐷 at the source and drain side,
respectively. As shown in Fig. 1, 𝛽𝑆 and 𝛽𝐷 are the intermediate
nodes in which the equations for are solved after applying boundary
conditions to the Poisson’s equation using the asymptotic compact
modeling approach [11].

In Fig. 1, 𝛥𝜙 is a node for the work-function difference. Moreover,
for the short channel effects (SCEs), we add certain nodes, such as
𝑛 for sub-threshold slope. Similarly, 𝛥𝑉th is a node for the change
in threshold voltage, 𝑀𝑜𝑐 is for channel length modulation (CLM),
𝑀𝑢 is for the effective mobility, and 𝑉dsat is for the drain saturation
voltage, etc. Overall, the nodes preserve important physics for the
FinFET transistor.

Fig. 2 presents an example of GCM feature transformation for the
node 𝑛, which is a combination of physical equations and a multi-layer
perceptron (MLP). In BSIM-CMG [12], the sub-threshold slope factor
(𝑛) is calculated as

𝑛 = 𝛩𝑆𝑆

(

1 + 𝐶𝐼𝑇𝑖 + 𝐶𝑑𝑠𝑐
2𝐶𝑠𝑖 ∥ 𝐶𝑜𝑥

)

(2)

where 𝛩𝑆𝑆 is swing temperature coefficient, 𝐶𝑠𝑖 and 𝐶𝑜𝑥 are the channel
and oxide capacitance, respectively. The 𝐶𝑑𝑠𝑐 is given as

𝐶𝑑𝑠𝑐 = 0.5

𝑐𝑜𝑠ℎ
(

𝐷𝑉 𝑇 1𝑆𝑆𝑖.
𝐿𝑒𝑓𝑓
𝜆

)

− 1

×
(

𝐶𝐷𝑆𝐶 + 𝐶𝐷𝑆𝐶𝐷𝑎.𝑉𝑑𝑠𝑥
)

(3)

where, 𝐶𝐼𝑇𝑖 is a parameter for interface trap, 𝐷𝑉 𝑇 1𝑆𝑆𝑖 is
sub-threshold swing exponent coefficient parameter, 𝐶𝐷𝑆𝐶 is a param-
eter for coupling capacitance between S/D and channel, and 𝐶𝐷𝑆𝐶𝐷𝑎
is a parameter for drain-bias sensitivity of 𝐶𝐷𝑆𝐶. Thus, to model
2

Fig. 2. Combination of a multi-layer perceptron (MLP) and the physical equation in
aggregation to obtain the value of sub-threshold factor (𝑛).

Fig. 3. A two-phase training program for GCM for efficient extraction of GCM model.

the sub-threshold slope, BSIM-CMG takes four fitting parameters. To
model sub-threshold slope node into our GCM, we use the combination
of physical equations and MLP as shown in Fig. 2. To model the
drain bias dependency as observed in (3), we use MLP to obtain
𝑛Vds

. From (3), 𝑛Leff has a specific dependence on the channel length
(𝐿eff ) [12], we adopt the compact model to keep the physicality and
minimize model fitting. Similarly, we use the combination of MLPs
and the physical equations for the remaining node. Finally, the drain
current and its derivatives as output feature are calculated using the
drift-diffusion formulation. In GCM, by replacing fitting parameters
and related equations with MLPs, we will leverage model training of
neural networks that are data driven and differentiable. Therefore,
GCM automatically achieves high fitting accuracy and continuity for
circuit simulation. To train our model, we use shallow MLPs with 1 or
2 hidden layers. Each layer contains 4 or 8 neurons, trained with Adam
optimizer using PyTorch with a learning rate of 0.003. We use the batch
size of 50. Further, we use Gaussian Error Linear Unit (GELU) as an
activation function to train our model. In our model, we use 4 MLPs
for 5 different physical parameters i.e, n, 𝛥𝑉𝑇𝐻 , 𝛥𝜙, 𝑉𝑑𝑠𝑎𝑡, Mu and Moc.

Fig. 3 shows a two-phase training procedure for efficient extraction
of the GCM model, balancing multiple objectives in the loss function.
In Phase 1, we use 𝐼 − 𝑉 data to train the model, with 𝐺 in the
ds gs 𝑚
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Fig. 4. Validation of our GCM model (shown by solid lines) for n-FinFET with 7 nm PDK (shown by symbols) (a) 𝐼ds–𝑉gs characteristics at 𝑉ds = 50 mV and 𝑉ds = 0.7 V, (b)
rans-conductance at 𝑉ds = 50 mV and 𝑉ds = 0.7 V, (c) 𝐼ds–𝑉ds characteristics at multiple 𝑉gs, and (d) Output conductance at multiple 𝑉gs. Validation of our GCM model for
-FinFET with 7 nm PDK (e) 𝐼ds–𝑉gs characteristics at |𝑉ds| = 50 mV and |𝑉ds| = 0.7 V, (f) Trans-conductance at |𝑉ds| = 50 mV and |𝑉ds| = 0.7 V, (g) 𝐼ds–𝑉ds characteristics at
ultiple 𝑉gs, and (h) Output conductance at multiple 𝑉gs.
Fig. 5. Training curves of GCM parameters (a) Sub-threshold slope parameter (𝑛),(b) Threshold voltage parameter (𝛥𝑉th), (c) Channel length modulation parameter (𝑀𝑜𝑐), and
(d) Effective mobility parameter (𝑀𝑢). It only takes 31.33 s to complete the training of parameters.
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loss function to improve the accuracy. GCM extracts 𝑉ds independent
parameters in this phase. In Phase 2, we freeze the learned parameters
in Phase 1 and extract 𝑉ds dependent parameters. We use IV data
generated from a BSIM-CMG based FinFET model at 7 nm [13] to train
the GCM model.

3. Results and discussion

Fig. 4 validates the main electrical characteristics of the n-FinFET
and p-FinFET between the 7 nm FinFET PDK BSIM-CMG model and
GCM. The reference data set is generated in HSPICE simulator. The
total number of data points required to train our model at different
bias conditions are 200. Fig. 4(a) shows the 𝐼ds–𝑉gs characteristics at
ds = 50 mV and 𝑉ds = 0.7 V and its derivatives shown in Fig. 4(b).
here Fig. 4(c) and (d) show 𝐼ds–𝑉ds characteristics at multiple 𝑉gs

and its derivatives. Similarly, the validation of electrical characteristics
for p-FinFET are shown in Fig. 4(e)–(h). The GCM model accurately
3

w

captures the drain current and its derivatives for both n-FinFET and
p-FinFET.

Fig. 5 illustrates the training curves for several GCM model parame-
ters. Fig. 5(a) shows convergence of sub-threshold slope parameter (𝑛)

hich converge to its final value to 1.0933 very efficiently. Similarly,
onvergence of threshold voltage parameter (𝛥𝑉th), channel length
odulation parameter (𝑀𝑜𝑐), and effective mobility parameter (𝑀𝑢)

re shown in Fig. 5(b)–(d).
Fig. 6 demonstrates circuit simulation with GCM through Verilog-

. Fig. 6(b) compares the voltage transfer curve (VTC) NMOS resistive
oad inverter (as shown in Fig. 6(a)). The table shown in Fig. 6(c)
ompares the SPICE simulation time and the number of model pa-
ameters of GCM with the BSIM model. For the 7 nm FinFET, GCM
as 113 parameters and extracts all model parameters in 31.33 s. This
s significantly faster than the conventional extraction process, which
sually takes hours to days. GCM achieves similar accuracy as BSIM,
ith shorter simulation time in SPICE.
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Fig. 6. (a) NMOS resistive load inverter. (b) Comparison of inverter voltage transfer
curve (VTC) obtained from our GCM and BSIM model. (c) Comparison of SPICE
simulation time and number of model parameters of GCM with the BSIM model.

4. Conclusion

We propose a novel graph-based compact model which is physical
and efficient in parameter extraction. The graph structure preserves key
physical models, supports automatic learning from data, and is flexible
to incorporate more advanced effects (e.g., cryogenic effects).
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