
Solid-State Electronics 199 (2023) 108520

Available online 6 November 2022
0038-1101/© 2022 Elsevier Ltd. All rights reserved.

GPGPU MCII for high-energy implantation

Fumie Machida a,*, Hiroo Koshimoto a, Yasuyuki Kayama a, Alexander Schmidt b, Inkook Jang b,
Satoru Yamada a, Dae Sin Kim b

a DS2 Lab, DS Center, Samsung R&D Institute Japan (SRJ), Tsurumi-ku, Yokohama 230-0027, Japan
b CSE Team, Innovation Center, Samsung Electronics Co., Ltd., Hwasung-si, Gyeonggi-do 18448, Korea

A R T I C L E I N F O

Keywords:
GPGPU acceleration
Ion Implantation
Monte Carlo Simulation

A B S T R A C T

In this paper, we develop a GPGPU acceleration methodology for the Binary-Collision-Approximation based
Monte Carlo ion implantation simulation (MCII). Our proposed method avoids the branch-divergence issue
which comes from the difference of material crystallinity for the structure with multiple materials. We also
introduce an efficient scheme to mitigate the side effect for damage accumulation due to massive parallelization
of simulation. Our demonstration of high energy implantation into CIS structure shows almost 40x speed-up
compared to CPU implementation of MCII. We conclude that GPU-MCII is effective for acceleration of Monte
Carlo simulations with high energy implantation e.g. deep photodiode or well isolation formation.

1. Introduction

Ion implantation is one of the main methods to introduce dopants in
semiconductor technology and high energy implantation was used for
over 40 years for many industrial applications [1], including formation
of buried dopant layers for bipolar transistors, deep photodiodes for
CMOS image sensors and deep well isolation implantations. The Binary-
Collision-Approximation (BCA) based Monte Carlo (MC) simulation is
widely used for prediction of ion implantation profiles and optimization
of semiconductor processing conditions. Various physical models have
been proposed and improved by many researchers so far [2–6], and
many efforts have been made to reduce the calculation time of the BCA-
based MC simulators [7–9]. Nevertheless, the calculation time is still an
issue for high energy implantations because of many collision events
that have to be considered within BCA MC simulation.

To resolve this problem, we have developed a GPU implementation
of the BCA-based MC simulator (GPU-MCII) with NVIDIA’s Compute
Unified Device Architecture (CUDA). GPUs are capable of massively
parallel processing with thousands of cores. However, they have some
restrictions due to the architecture. In this paper, the GPU performance,
the drawbacks in GPU implementation of MCII, and the improvement
techniques are shown.

2. Methodology

2.1. MCII

BCA MC simulation flow considers that energetic particles travel
through material losing energy until they come to rest due to successive
collisions with the target material atoms nuclei and inelastic electronic
energy losses. Thus, a MC simulation cycle includes the following
calculation steps:

(1) search target atoms,
(2) calculate nuclear/electronic energy loss and direction of a pro-

jectile ion after a collision based on BCA,
(3) update next particle position assuming that it moves in a straight

line,
(4) calculate the amount of energy transferred during a collision and

generated crystal damage (in crystalline materials only),
(5) check criterion of trajectory splitting [9],
(6) update dopant profile.

This MC cycle is repeated until the energy of a particle reaches the
cut-off energy (5 eV). Due to a large number of real ions that are typi-
cally implanted in semiconductor technology (dose is in a range of
1011cm− 2 ~ 1015cm− 2), in simulation, each MC particle corresponds to
many real ions and so implanted dose and damage are scaled

* Corresponding author.
E-mail address: f.machida@samsung.com (F. Machida).

Contents lists available at ScienceDirect

Solid State Electronics

journal homepage: www.elsevier.com/locate/sse

https://doi.org/10.1016/j.sse.2022.108520

mailto:f.machida@samsung.com
www.sciencedirect.com/science/journal/00381101
https://www.elsevier.com/locate/sse
https://doi.org/10.1016/j.sse.2022.108520
https://doi.org/10.1016/j.sse.2022.108520
https://doi.org/10.1016/j.sse.2022.108520
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sse.2022.108520&domain=pdf

Solid State Electronics 199 (2023) 108520

2

accordingly. It is critically important to track dynamic changes of lattice
damage since they are affecting subsequent MC particle collision prob-
abilities at step (1) of the loop [6]. It is considered that ions move in
straight lines between collisions with target atoms and free path length
is calculated for amorphous and crystalline materials following method
described in [6]. We are using ray tracing method [10,11] to update
projectile position at step (3). Trajectory splitting at step (5) is one of the
statistical enhancement methods [8,9], which splits a tracked MC par-
ticle into two when the criterion related to energy and dopant concen-
tration at the particle position are satisfied. In this manner, profile
fluctuations can be efficiently reduced especially at low concentration
part (at the tail of implantation profile and near the structure surface in
case of high energy implantation). The method is inevitable because
suppression of dopant profile fluctuations without trajectory splitting
needs an increase of statistics by more than an order of magnitude,
leading to excessive simulation time.

Fig. 1 shows the simulation flow for an MC particle in the CPU
implementation of BCA algorithm (CPU-MCII). In CPU-MCII, a loop of
the MC cycles is executed sequentially for every MC particle. Even
though the multicore CPU computes multiple MC particles in parallel,
the impact on damage accumulation is limited because the number of
parallel executions is small. However, it would be problematic with GPU
due to massively parallelized execution (Section 3). Also, GPU imple-
mentation would need some way to handle the added MC particles by
trajectory splitting because the buffer size cannot be flexibly changed
during GPU execution. Furthermore, when there are many branch codes
like “if/else” as shown in the MCII flow (Fig. 1), it is known that they
could be a cause of degradation of performance for GPU.

2.2. Implementation

Implementing the MC cycle onto GPU without ingenuity introduces
the branch divergence [12,13] which is the performance degradation
caused by branch instructions. Because multiple GPU cores running at
the same execution unit cannot execute different operations at once, the
threads entering the other side at the branch are blocked. Consequently,
the portion of effective GPU threads gets decreased. This is called the
branch divergence. However, it is inevitable to have branching where a
particle is moving from one type of material to another or where

trajectory splitting happens. To avoid the branch divergence, we
implemented a mechanism that we call the Dynamic Batch Charger
(DBC). The DBC consists of the following treatments:

(a) decomposing the MC cycle into multiple GPU kernels removed
the branch instructions (Fig. 2(a)),

(b) defining a GPU batch which is a tuple of the GPU kernels and the
MC particles for a material crystallinity,

(c) binding a GPU batch with a chunk of GPU cores (a part of a GPU
board),

(d) monitoring GPU batches, flushing out results of GPU batches and
loading next GPU batches (Fig. 2(b)), and

(e) recharging the MC particles in the GPU batches flushed out
(Fig. 3).

The treatment (c) is the key concept of the DBC, because this enables
flexibility on GPU in exchange for a small performance loss. Later we
discuss this performance loss with the benchmark. Additionally, we
could change the number of MC particles dynamically by treatment (e).
The MC particles still in flight are held for a next execution, and the MC
particles splitting are copied to create more MC particles. In this way,
the GPU-MCII carries out individual and variable calculations for a mass
of MC particles at once.

2.3. Slowcoach scheme

In order to reduce the impact on damage accumulation as discussed
in Section 2, we introduced the slowcoach scheme with multiple slow-
coach approaches. Slowcoach approach is a method to use not full size of
a GPU batch but the specified smaller size. It reduces GPU utilization,
but generates damage little by little, avoiding unphysical effects of
sudden damage change. The keys to obtain accurate profile are the
optimal task size and the end condition of the slowcoach approach. To
define them, we firstly take sample data with a small number of particles
Ns using the slowcoach approach (Fig. 4). Using maximum damage
density Cd,max from the sample data and the damage threshold (Cd,max)
for amorphization, we could estimate that the number of particles
required for the damage density to reach to the threshold is Ns

Cd,th
Cd,max

,. And

Fig. 1. Simulation flow of the CPU-MCII for a particle. Fig. 2. Dynamically controlled GPU batches.

F. Machida et al.

Solid State Electronics 199 (2023) 108520

3

then, the number of completed tasks to end the slowcoach approach is
defined by A⋅Ns

Cd,th
Cd,max

. In the same way, the task size to be used in the

slowcoach approach is defined by B⋅Ns
Cd,th

Cd,max
. Where, A and B are user

parameters, and A ≥ 1 and B < 1 are desirable to generate damage
slowly.

Fig. 5 shows Arsenic (As) profiles obtained by CPU-MCII (calibrated
to internal SIMS data) and GPU-MCII. Without a slowcoach approach,
the tail profile is suppressed compared to the CPU-MCII because the
peak area is amorphized in the early stage due to the concentration of
damage generation. In reality, at the early stage of implantation surface
damage is small and some portions of ions have high chance of chan-
neling, forming deep tail profile. When a slowcoach approach is used
this effect is properly captured and the profile becomes similar to the

result of CPU-MCII.

2.4. Benchmark

To evaluate the acceleration effect of DBC, we compared it with the
ingenious GPUMCII which uses “if/else” in the kernel to switch material
models. Tests were performed with Nvidia Tesla V100. For a single
material structure as shown in Fig. 6(a), branch-divergence induced by
differences of the material-dependent model doesn’t occur. Therefore,
for 50 keV implantation, a no-batch method takes almost the same
calculation time as the DBC method (Fig. 7). On the other hand, for a
structure with 2 materials as Fig. 6(b), DBC is faster than a no-batch
method. Code profiling shows that for a “search target atom” kernel
the warp execution efficiency increased from 14.7 % to 69.8 % when
DBC is used. The difference becomes larger for high energy implanta-
tion, since for the simulations with large number of MC collision cycles
DBC can effectively use vacant threads that have already been
computed.

For more practical comparison with CPU-MCII, we’ve tested a deep
implantation into a 3D CIS structure. Simulations were performed with
Nvidia Tesla V100 and 8 cores on Intel Xeon Gold 6146 3.2 GHz. Fig. 8
shows the results of simulation of low dose (5 × 1011 cm− 2) Arsenic
implantation with 3 MeV energy in 3D CIS structure. Simulation time of
GPU-MCII is merely 4.0 % of CPU-MCII for 1 × 106 particles statistics.
For 1 × 108 particles, it’s reduced further to 2.4 % due to reduced
relative overhead for simulation initialization (Table 1).

3. Summary

We developed the GPU-MCII method that utilizes the decomposition
strategies to avoid the branch divergence performance degradation on
GPU. We demonstrated that it can work not only for the branch diver-
gence but also for the effective use of empty threads. Slowcoach
approach algorithm was implemented in order to mitigate the all-at-
once damage accumulation overestimation due to massively parallel
GPU execution. Notwithstanding the fact that parallel performance of
GPGPU-MCII can degrade for low energies and high doses, when
frequent CPU-GPU data sharing is needed, our methodology is showing
excellent results for high energy and low dose implantation steps
simulation, which are important for CIS technology optimization. For
typical process conditions and modeling setup about 40× simulation
time acceleration can be achieved.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 3. Dynamically controlled MC particles.

Fig. 4. Slowcoach approach schematic.

Fig. 5. Implanted profile with and without slowcoach, and experimental data
[6] (dose = 8.0 × 1015cm− 2, energy = 50 keV, A = 4, B = 0.1, tilt = 0◦,
(100)Si). Fig. 6. (a) single material structure (b) 2 material structure.

F. Machida et al.

Solid State Electronics 199 (2023) 108520

4

Data availability

No data was used for the research described in the article.

References

[1] Ziegler JF. High energy ion implantation. Nucl Instrum Methods Phys Res B 1985;6
(1-2):270–82.

[2] Ziegler JF, Biersack JP, Ziegler MD. SRIM – The stopping and range of ions in
matter. James Ziegler 2008.

[3] Robinson MT, Torrens IM. Computer simulation of atomic displacement cascades
in solids in the binary-collision. PRB 1974;9(12):5008–24.

[4] Norgett MJ, Robinson MT, Torrens IM. A proposed method of calculating
displacement dose rates. Nucl Eng Des 1975;33(1):50–4.

[5] Hobler G, Pötzl H, Gong L, Ryssel H. Two-dimensional Monte Carlo Simulation of
Boron Implantation in Crystalline Silicon. Simulat Semiconduct Dev Process 1991;
4:389–98.

[6] Tian S. Predictive Monte Carlo ion implantation simulator from subkeV to above 10
MeV. JAP 2003;93:5893–904.

[7] Wang G, et al. A computationally efficient target search algorithm for a Monte
Carlo ion implantation simulator. Journal of Technology Computer Aided Design
TCAD 1996:1–19. https://doi.org/10.1109/TCAD.1996.6449179.

[8] Bohmayr W, Burenkov A, Lorenz J, Ryssel H, Selberherr S. Statistical Accuracy and
CPU Time Characteristic of Three Trajectory Split Methods for Monte Carlo
Simulation of Ion Implantation. Simulat Semiconduct Proceedes 1995;6.

[9] Kubotera H, et al. Efficient Monte Carlo simulation of ion implantation into 3D
FinFET structure. 20th International Conference on Ion Implantation Technology
(IIT) 2014;1–4. https://doi.org/10.1109/IIT.2014.6939999.

[10] Fang Q, Yan S. GPU-accelerated mesh-based Monte Carlo photon transport
simulations. J Biomed Opt 2019;24(11).

[11] A. S. M. Shevtsov, A. Kapustin, Ray-Triangle intersection algorithm for modern
CPU architectures, in: GraphiCon’2007, 2007, pp. 33–39.

[12] W. W. Fung, I. Sham, G. Yuan, T. M. Aamodt, Dynamic Warp Formation and
Scheduling for Efficient GPU Control Flow, in: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), 2007, pp. 407–420.
doi:10.1109/MICRO.2007.30.

[13] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, A. Moshovos, Demystifying
GPU microarchitecture through microbenchmarking, in: 2010 IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS), IEEE, 2010,
pp. 235–246.

Fig. 7. Execution time for 50 keV/1MeV implantation for no-batch and DBC with structure (a), (b) in Fig. 6.

Fig. 8. Deep implantation of As into 3D CIS with 3 MeV energy, 5× 1011cm− 2, 284,638 mesh elements (right: 3D profile, left: extracted 1D profile).

Table 1
TAT comparison between CPU and GPU.

Number of particles Calculation time[hour] CPU × 8/GPU

CPU × 8 GPU

1 × 106 0.63 0.025 25.2
1 × 108 58.76 2.43 41.1

F. Machida et al.

http://refhub.elsevier.com/S0038-1101(22)00291-X/h0005
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0005
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0010
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0010
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0015
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0015
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0020
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0020
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0025
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0025
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0025
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0030
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0030
https://doi.org/10.1109/TCAD.1996.6449179
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0040
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0040
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0040
https://doi.org/10.1109/IIT.2014.6939999
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0050
http://refhub.elsevier.com/S0038-1101(22)00291-X/h0050

	GPGPU MCII for high-energy implantation
	1 Introduction
	2 Methodology
	2.1 MCII
	2.2 Implementation
	2.3 Slowcoach scheme
	2.4 Benchmark

	3 Summary
	Declaration of Competing Interest
	Data availability
	References

