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A B S T R A C T   

In this paper, we develop a GPGPU acceleration methodology for the Binary-Collision-Approximation based 
Monte Carlo ion implantation simulation (MCII). Our proposed method avoids the branch-divergence issue 
which comes from the difference of material crystallinity for the structure with multiple materials. We also 
introduce an efficient scheme to mitigate the side effect for damage accumulation due to massive parallelization 
of simulation. Our demonstration of high energy implantation into CIS structure shows almost 40x speed-up 
compared to CPU implementation of MCII. We conclude that GPU-MCII is effective for acceleration of Monte 
Carlo simulations with high energy implantation e.g. deep photodiode or well isolation formation.   

1. Introduction 

Ion implantation is one of the main methods to introduce dopants in 
semiconductor technology and high energy implantation was used for 
over 40 years for many industrial applications [1], including formation 
of buried dopant layers for bipolar transistors, deep photodiodes for 
CMOS image sensors and deep well isolation implantations. The Binary- 
Collision-Approximation (BCA) based Monte Carlo (MC) simulation is 
widely used for prediction of ion implantation profiles and optimization 
of semiconductor processing conditions. Various physical models have 
been proposed and improved by many researchers so far [2–6], and 
many efforts have been made to reduce the calculation time of the BCA- 
based MC simulators [7–9]. Nevertheless, the calculation time is still an 
issue for high energy implantations because of many collision events 
that have to be considered within BCA MC simulation. 

To resolve this problem, we have developed a GPU implementation 
of the BCA-based MC simulator (GPU-MCII) with NVIDIA’s Compute 
Unified Device Architecture (CUDA). GPUs are capable of massively 
parallel processing with thousands of cores. However, they have some 
restrictions due to the architecture. In this paper, the GPU performance, 
the drawbacks in GPU implementation of MCII, and the improvement 
techniques are shown. 

2. Methodology 

2.1. MCII 

BCA MC simulation flow considers that energetic particles travel 
through material losing energy until they come to rest due to successive 
collisions with the target material atoms nuclei and inelastic electronic 
energy losses. Thus, a MC simulation cycle includes the following 
calculation steps:  

(1) search target atoms, 
(2) calculate nuclear/electronic energy loss and direction of a pro-

jectile ion after a collision based on BCA,  
(3) update next particle position assuming that it moves in a straight 

line,  
(4) calculate the amount of energy transferred during a collision and 

generated crystal damage (in crystalline materials only),  
(5) check criterion of trajectory splitting [9],  
(6) update dopant profile. 

This MC cycle is repeated until the energy of a particle reaches the 
cut-off energy (5 eV). Due to a large number of real ions that are typi-
cally implanted in semiconductor technology (dose is in a range of 
1011cm− 2 ~ 1015cm− 2), in simulation, each MC particle corresponds to 
many real ions and so implanted dose and damage are scaled 
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accordingly. It is critically important to track dynamic changes of lattice 
damage since they are affecting subsequent MC particle collision prob-
abilities at step (1) of the loop [6]. It is considered that ions move in 
straight lines between collisions with target atoms and free path length 
is calculated for amorphous and crystalline materials following method 
described in [6]. We are using ray tracing method [10,11] to update 
projectile position at step (3). Trajectory splitting at step (5) is one of the 
statistical enhancement methods [8,9], which splits a tracked MC par-
ticle into two when the criterion related to energy and dopant concen-
tration at the particle position are satisfied. In this manner, profile 
fluctuations can be efficiently reduced especially at low concentration 
part (at the tail of implantation profile and near the structure surface in 
case of high energy implantation). The method is inevitable because 
suppression of dopant profile fluctuations without trajectory splitting 
needs an increase of statistics by more than an order of magnitude, 
leading to excessive simulation time. 

Fig. 1 shows the simulation flow for an MC particle in the CPU 
implementation of BCA algorithm (CPU-MCII). In CPU-MCII, a loop of 
the MC cycles is executed sequentially for every MC particle. Even 
though the multicore CPU computes multiple MC particles in parallel, 
the impact on damage accumulation is limited because the number of 
parallel executions is small. However, it would be problematic with GPU 
due to massively parallelized execution (Section 3). Also, GPU imple-
mentation would need some way to handle the added MC particles by 
trajectory splitting because the buffer size cannot be flexibly changed 
during GPU execution. Furthermore, when there are many branch codes 
like “if/else” as shown in the MCII flow (Fig. 1), it is known that they 
could be a cause of degradation of performance for GPU. 

2.2. Implementation 

Implementing the MC cycle onto GPU without ingenuity introduces 
the branch divergence [12,13] which is the performance degradation 
caused by branch instructions. Because multiple GPU cores running at 
the same execution unit cannot execute different operations at once, the 
threads entering the other side at the branch are blocked. Consequently, 
the portion of effective GPU threads gets decreased. This is called the 
branch divergence. However, it is inevitable to have branching where a 
particle is moving from one type of material to another or where 

trajectory splitting happens. To avoid the branch divergence, we 
implemented a mechanism that we call the Dynamic Batch Charger 
(DBC). The DBC consists of the following treatments:  

(a) decomposing the MC cycle into multiple GPU kernels removed 
the branch instructions (Fig. 2(a)),  

(b) defining a GPU batch which is a tuple of the GPU kernels and the 
MC particles for a material crystallinity,  

(c) binding a GPU batch with a chunk of GPU cores (a part of a GPU 
board),  

(d) monitoring GPU batches, flushing out results of GPU batches and 
loading next GPU batches (Fig. 2(b)), and  

(e) recharging the MC particles in the GPU batches flushed out 
(Fig. 3). 

The treatment (c) is the key concept of the DBC, because this enables 
flexibility on GPU in exchange for a small performance loss. Later we 
discuss this performance loss with the benchmark. Additionally, we 
could change the number of MC particles dynamically by treatment (e). 
The MC particles still in flight are held for a next execution, and the MC 
particles splitting are copied to create more MC particles. In this way, 
the GPU-MCII carries out individual and variable calculations for a mass 
of MC particles at once. 

2.3. Slowcoach scheme 

In order to reduce the impact on damage accumulation as discussed 
in Section 2, we introduced the slowcoach scheme with multiple slow-
coach approaches. Slowcoach approach is a method to use not full size of 
a GPU batch but the specified smaller size. It reduces GPU utilization, 
but generates damage little by little, avoiding unphysical effects of 
sudden damage change. The keys to obtain accurate profile are the 
optimal task size and the end condition of the slowcoach approach. To 
define them, we firstly take sample data with a small number of particles 
Ns using the slowcoach approach (Fig. 4). Using maximum damage 
density Cd,max from the sample data and the damage threshold (Cd,max) 
for amorphization, we could estimate that the number of particles 
required for the damage density to reach to the threshold is Ns

Cd,th
Cd,max

,. And 

Fig. 1. Simulation flow of the CPU-MCII for a particle.  Fig. 2. Dynamically controlled GPU batches.  
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then, the number of completed tasks to end the slowcoach approach is 
defined by A⋅Ns

Cd,th
Cd,max

. In the same way, the task size to be used in the 

slowcoach approach is defined by B⋅Ns
Cd,th

Cd,max
. Where, A and B are user 

parameters, and A ≥ 1 and B < 1 are desirable to generate damage 
slowly. 

Fig. 5 shows Arsenic (As) profiles obtained by CPU-MCII (calibrated 
to internal SIMS data) and GPU-MCII. Without a slowcoach approach, 
the tail profile is suppressed compared to the CPU-MCII because the 
peak area is amorphized in the early stage due to the concentration of 
damage generation. In reality, at the early stage of implantation surface 
damage is small and some portions of ions have high chance of chan-
neling, forming deep tail profile. When a slowcoach approach is used 
this effect is properly captured and the profile becomes similar to the 

result of CPU-MCII. 

2.4. Benchmark 

To evaluate the acceleration effect of DBC, we compared it with the 
ingenious GPUMCII which uses “if/else” in the kernel to switch material 
models. Tests were performed with Nvidia Tesla V100. For a single 
material structure as shown in Fig. 6(a), branch-divergence induced by 
differences of the material-dependent model doesn’t occur. Therefore, 
for 50 keV implantation, a no-batch method takes almost the same 
calculation time as the DBC method (Fig. 7). On the other hand, for a 
structure with 2 materials as Fig. 6(b), DBC is faster than a no-batch 
method. Code profiling shows that for a “search target atom” kernel 
the warp execution efficiency increased from 14.7 % to 69.8 % when 
DBC is used. The difference becomes larger for high energy implanta-
tion, since for the simulations with large number of MC collision cycles 
DBC can effectively use vacant threads that have already been 
computed. 

For more practical comparison with CPU-MCII, we’ve tested a deep 
implantation into a 3D CIS structure. Simulations were performed with 
Nvidia Tesla V100 and 8 cores on Intel Xeon Gold 6146 3.2 GHz. Fig. 8 
shows the results of simulation of low dose (5 × 1011 cm− 2) Arsenic 
implantation with 3 MeV energy in 3D CIS structure. Simulation time of 
GPU-MCII is merely 4.0 % of CPU-MCII for 1 × 106 particles statistics. 
For 1 × 108 particles, it’s reduced further to 2.4 % due to reduced 
relative overhead for simulation initialization (Table 1). 

3. Summary 

We developed the GPU-MCII method that utilizes the decomposition 
strategies to avoid the branch divergence performance degradation on 
GPU. We demonstrated that it can work not only for the branch diver-
gence but also for the effective use of empty threads. Slowcoach 
approach algorithm was implemented in order to mitigate the all-at- 
once damage accumulation overestimation due to massively parallel 
GPU execution. Notwithstanding the fact that parallel performance of 
GPGPU-MCII can degrade for low energies and high doses, when 
frequent CPU-GPU data sharing is needed, our methodology is showing 
excellent results for high energy and low dose implantation steps 
simulation, which are important for CIS technology optimization. For 
typical process conditions and modeling setup about 40× simulation 
time acceleration can be achieved. 
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Fig. 3. Dynamically controlled MC particles.  

Fig. 4. Slowcoach approach schematic.  

Fig. 5. Implanted profile with and without slowcoach, and experimental data 
[6] (dose = 8.0 × 1015cm− 2, energy = 50 keV, A = 4, B = 0.1, tilt = 0◦, 
(100)Si). Fig. 6. (a) single material structure (b) 2 material structure.  
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Fig. 7. Execution time for 50 keV/1MeV implantation for no-batch and DBC with structure (a), (b) in Fig. 6.  

Fig. 8. Deep implantation of As into 3D CIS with 3 MeV energy, 5× 1011cm− 2, 284,638 mesh elements (right: 3D profile, left: extracted 1D profile).  

Table 1 
TAT comparison between CPU and GPU.  

Number of particles Calculation time[hour] CPU × 8/GPU 

CPU × 8 GPU 

1 × 106  0.63  0.025  25.2 
1 × 108  58.76  2.43  41.1  
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