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A B S T R A C T

In this work we present a highly efficient method to perform quantum transport simulations on atomistic de-
vices with metal contacts. In particular, we consider lateral heterostructures of silicide/semi-conductor/silicide
and metal/semi-metal/metal which are constructed by the first-principles density functional theory method.
We show that large-sized heterostructure Hamiltonian can be effectively reduced, while not losing the accuracy
in a practical sense, enabling highly efficient calculation of the electrical transport properties of the devices
based on the non-equilibrium Green’s function method.
1. Introduction

As the role of the interfaces, junctions and contacts is increas-
ingly important in ultra-scaled devices, it has become necessary to
include them as integral parts of simulated device. Although the em-
pirical tight binding (ETB) method combined with the non-equilibrium
Green’s function (NEGF) method is the state-of-the-art atomistic de-
vice simulation methodology [1,2], it has serious limitations in deal-
ing with heterogeneous structures consisting of different materials.
The parameter-free density functional theory (DFT) method which is
naturally suited for the problem is therefore called for.

A major obstacle of adopting DFT method in device simulations is
the computational burden of handling large-sized DFT Hamiltonian.
This must be overcome if the DFT Hamiltonian is to be actively used in
realistic device simulations in place of ETB. In this regard, the Hamil-
tonian size reduction method is attractive because the computational
time and resources can be reduced by a few orders of magnitude,
while the errors in the charge density and current are kept within
a few percents or less. The reduction method for DFT Hamiltonian
has been developed for homogeneous structures [3,4] and recently
extended to treat heterostructures [5]. In this work, we further extend
the application of the latter method to heterogeneous structures with
metallic contacts, paving the way for realistic simulations of future
generation logic and memory devices at the atomistic scale.
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2. Hamiltonian size reduction for lateral heterostructures

A generic lateral heterostructure device consisting of three different
materials, represented by unit cells A, B, and C, is shown in Fig. 1-
(a). Between two materials there are junction cells J1,… , Jp(q) that may
show spatially transient behavior in terms of the atom species and
their positions. Our goal is to reduce the Hamiltonian of each cell and
reconstruct the same device with the effective Hamiltonians as shown
in Fig. 1-(d).

The basic idea of the Hamiltonian size reduction method is to
unitarily transform the full Hamiltonian to a smaller sized matrix within
an energy window of interest where the charge transport takes place.
This is possible by constructing a transformation matrix 𝑈 consist-
ing of a few selected Bloch states within the energy window which
is usually a few tenths of eV from the band edges. The so-called
mode-space transformation has been developed for various Hamilto-
nians such as effective mass theory [6,7], k⋅p method [8], TB [9–
11], pseudo-potential [12,13], and DFT Hamiltonians [3,14]. For TB
and atomic-orbital based DFT Hamiltonians, it is necessary to remove
unphysical states arising from the transformation [3,9].

For heterostructures, however, it is not feasible to obtain the Bloch
states of each component cell as some cells like junction cells cannot
be repeated periodically. Instead, we form a supercell that consists of
minimal number of cells with which the device in Fig. 1-(a) can be
constructed. See Fig. 1-(b). In the figure, cells labeled as Bf are needed
in addition, which are the buffer cells in case the supercell is terminated
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Fig. 1. (a) Schematic of a lateral heterostructure device consisting of three materials.
Cells A, B, and C are the unit cells and J1 , .., Jp(q) are the junction cells. (b) A supercell
consisting of minimal number of cells. Cells Bf are the buffer cells. In (c) and (d), each
cell is reduced in size in its Hamiltonian.

Fig. 2. Steps for lateral heterostructure device simulations by the Hamiltonian
reduction method.

with vacuum or junction cells in case the supercell itself is repeated
periodically. We relax the supercell by the DFT method and extract its
Hamiltonian, which is a block matrix with 𝐿 block elements, where 𝐿
is the number of cells in the supercell. For example, for the supercell
of Fig. 1(b), 𝐿 = 𝑝 + 𝑞 + 3 (for three unit cells of A, B, and C) + 2 (for
two buffer cells).

We solve the 𝐸 − 𝑘 electronic band structure problem for the
supercell and obtain its Bloch states 𝛹𝑘,𝜈 where 𝑘 is the usual wave
vector and 𝜈 is the subband index. With the obtained Bloch states, we
form a matrix 𝑈ND = [𝛹1,… , 𝛹𝑖,… , 𝛹𝑛], where index 𝑖 denotes (𝑘, 𝜈) and
𝑛 is the number of selected supercell Bloch states. 𝑈ND is the matrix
of size 𝑁𝑇 × 𝑛 where 𝑁𝑇 is the size of the supercell Hamiltonian H,
given as 𝑁𝑇 =

∑𝐿
𝑏=1 𝑁𝑏 where 𝑁𝑏 is the Hamiltonian size of block 𝑏.

See step (2) of Fig. 2. We then make an initial diagonal matrix U by
placing sub-blocks of 𝑈ND to the diagonal entries (step (3) of Fig. 2).
Next we systematically remove the unphysical states on a block-by-
block basis so as to retain the block diagonal form of U [5]. If all the
unphysical branches are cleared, we obtain the effective supercell each
block of which is reduced in its Hamiltonian size as shown in Fig. 1-
(c). Finally we reconstruct the heterostructure device with the effective
heterostructure Hamiltonian as shown in Fig. 1-(d), and apply the NEGF
method to calculate the charge density and current.

The convergence behavior of our Hamiltonian reduction method for
hetero-structure is no different from that for homo-structure. Namely,
for both the homo- and hetero-structures, the convergence behavior
majorly depends on the choice of initial Bloch states. However, the
2

systematic selection scheme as outlined in Ref. [3] is usually efficient.
With our approach, devices consisting of a few thousand atoms (for ex-
ample, nanowire structure with diameter of 3 nm and length of 20 nm)
can be handled by utilizing a small cluster computer of several nodes.
In this work, however, smaller-sized devices are considered because
full-Hamiltonian solutions, which limit the computing resources, are to
be compared with the reduced-sized-Hamiltonian solutions as will be
shown in Section 3.

3. Applications to structures with metallic regions

In our previous work [5], we have demonstrated the effectiveness
and accuracy of the Hamiltonian size reduction method described in
the previous Section by taking the four examples devices of GaSb/InAs
tunnel field effect transistors (FETs), MoTe2/SnS2 bilayer vertical FETs,
InAs nanowire FETs with a defect, and Si nanowire FETs with rough
surfaces. The Hamiltonian size was reduced to around 5% of the origi-
nal full-Hamiltonian size without losing the accuracy of the calculated
transmission and local density of states [5]. All the four devices had
semi-conductors in their source, channel and drain regions so naturally
the energy window of interest where most of charge transport takes
place was taken to be a few tenths of eV from the conduction band
minima or valence band maxima.

In this work we applied the Hamiltonian reduction method to
the structure which includes metallic region(s). Firstly, NiSi/Si/NiSi
Schottky barrier structure in the nanowire geometry (see Fig. 3) is
considered where NiSi silicide is assumed a crystal phase and shows
metallic behavior. The supercell is 6.1 nm long and 1.0 nm in diameter
and consists of 10 blocks of total 533 atoms, where block 1 and block
6 are NiSi and Si unit cells, respectively, and blocks 3, 4 and 8, 9
are the junction cells. Blocks 2, 10, and 5, 7 are the junction cells
according to Fig. 1-(a) but may as well be called the buffer cells as
they are only slightly different from the NiSi or Si unit cells. The
periodic boundary condition was applied to the supercell. We used the
SIESTA package [15] to relax the supercell until the maximum force
on any of the atoms becomes less than 0.04 eV/Å. A standard GGA-
PBE functional [16] with the DZP pseudoatomic orbital basis set was
used for the DFT method. In the junction cells, the atoms are seen
unorderly positioned as the stress due to the lattice mismatch is applied
in the regions. Table in Fig. 3-(b) shows the result of the heterostructure
Hamiltonian reduction in the energy window of −3.0 eV to −1.5 eV.
The Hamiltonian size is reduced to about 15% of the original size. As
expected, due to the effect of the metallic region, the reduction rate is
not as high as in the cases of all-semiconductor structures.

Fig. 4-(a) shows the local density of states (LDOS) profile near
the left junction. The Si conduction band edge (𝐸𝑐) is at −2.35 eV
and the Schottky barrier height is 1.37 eV, which is quite large due
to the confinement effect of ultra-scaled nanowire structure. In the
figure, LDOS of the junction region is distinctively lower compared
to that of the metallic NiSi and may represent the interface states
at the NiSi/Si junction. This feature is very well reproduced by the
reduced-sized effective Hamiltonian, as seen in Fig. 4-(b) where LDOS
is evaluated at a cross-section in the junction region. Since LDOS
is faithfully reproduced by the reduced-sized Hamiltonian, a NEGF-
Poisson self-consistent calculation can be readily performed. The full
transport calculation results will be published elsewhere.

In Fig. 4-(c), the transmission through the device structure of Fig. 1-
(a) with the source and drain regions constructed by repeating cell 1
indefinitely is evaluated. Again, the transmission evaluated by using the
effective Hamiltonian agrees quite well with that evaluated by using
the much larger-sized full Hamiltonians, while the computation speed
is more than 2 orders faster.

Fig. 5-(a) shows TiN/Sb/TiN heterostructure where a-few-layer Sb
semi-metal is contacted with TiN metal, with a potential application
as a next-generation phase-change memory in mind. The supercell in
the thin film geometry is 7.5 nm long, 1.0 nm thick and periodic
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Fig. 3. (a) NiSi/Si/NiSi supercell consisting of 10 blocks. The supercell in the nanowire geometry is 6.1 nm long and 1.0 nm in diameter and repeated periodically lengthwise.
Red and blue balls represent Ni and Si atoms, respectively, and small empty balls hydrogen passivation atoms. (b) Table shows number of atoms (𝑁𝑎𝑡𝑜𝑚), size of full Hamiltonian
(𝑁𝑏) and size of the reduced Hamiltonian (𝑛𝑏) of each block. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 4. (a) LDOS profile around the left junction of the NiSi/Si/NiSi structure of Fig. 3-
(a). The LDOS in the junction region are highlighted by the red color. The unit of
LDOS is [eV m3]−1. (b) LDOS at the cross-section indicated by the arrow in (a). (c)
Transmission through the device structure. In (b) and (c), black lines and red dots with
lines represent the results calculated by using the full Hamiltonian and reduced-sized
effective Hamiltonian, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
3

Fig. 5. (a) TiN/Sb/TiN structure in the thin film geometry. The supercell is 7.5 nm
long, 1.0 nm thick and periodic in the perpendicular direction. (b) Transmission
calculated by the full Hamiltonian (black lines) and reduced-sized Hamiltonian (red
dots with thin lines). The Fermi energy of the entire structure (𝐸𝐹 ) is −3.67 eV as
indicated. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

in the perpendicular direction. The supercell with total of 580 atoms
are similarly handled to yield the reduced-sized effective Hamiltonian,
which excellently reproduces the transmission in the energy window of
1.5 eV wide as shown in Fig. 5-(b).

4. Conclusions

In this work, we have successfully applied the Hamiltonian reduc-
tion method to laterally heterostructured devices of NiSi/Si/NiSi and
TiN/Sb/TiN. We have shown that computationally demanding task due
to the involvement of metal contacts can be handled efficiently, paving
the way for large-scale atomistic simulations of practically relevant
contact problems.
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