
Solid-State Electronics 200 (2023) 108536

A
0

Contents lists available at ScienceDirect

Solid State Electronics

journal homepage: www.elsevier.com/locate/sse

Discontinuous Galerkin concept for Quantum-Liouville type equations✩

Valmir Ganiu ∗, Dirk Schulz
Chair for High Frequency Techniques, TU Dortmund, Dortmund, Germany

A R T I C L E I N F O

Keywords:
Computational nanotechnology
Numerical methods
Quantum transport
Von-Neumann equation
Quantum Liouville type equation

A B S T R A C T

A time-dependent discontinuous Galerkin method for the numerical solution of the Liouville–von-Neumann
equation in center mass coordinates for the analysis of quantum transport in nanoelectronics and nanophotonics
systems is presented. With this methodology, a further increase in computational efficiency compared to
conventional methods is achieved, particularly when considering large-scale problems.
1. Introduction

The full potential of Wigner function approaches is emerging for the
analysis of quantum electronic devices [1]. Recently, a closely related
method for the analysis of the carrier transport within quantum devices
was proposed that starts from the Liouville–von Neumann equation in
center-mass coordinates and applies a Finite Volume (FV) method for
the spatial approximation [2]. After an expansion of the density matrix
according to predefined eigenfunctions, an equation is obtained, which
corresponds to the conventional Wigner Transport Equation (WTE)
[1]. With this method, also called Quantum Liouville type equation
(QLTE), suitable boundary conditions to account for open systems are
incorporated by the introduction of a complex potential [2].

Instead of choosing the FV technique, an approximation apply-
ing Finite Element (FE) techniques would be conceivable. For time-
dependent problems, the use of FV schemes or even conceivable FE
techniques require the solution of large equation systems. Thus, such
algorithms can be exceedingly computationally expensive.

Alternatively, discontinuous Galerkin (DG) methods have proven
themselves in fluid dynamics to be computationally efficient [3,4] as
they bypass the solution of linear equation systems and allow high per-
formance computation via parallelizable matrix–vector multiplications.
Due to the mathematical relationship of the initial master equations,
e.g. Navier–Stokes equations [5] and QLTE, the DG methodology seems
to be a suitable technique for the approximation of QLTEs.

The DG approach is applied onto the mentioned QLTE [2], validated
and its computational efficiency is evaluated for its application onto the
simulation of quantum transport problems.

✩ The review of this paper was arranged by Francisco Gamiz.
∗ Corresponding author.
E-mail addresses: valmir.ganiu@tu-dortmund.de (V. Ganiu), dirk2.schulz@tu-dortmund.de (D. Schulz).

2. Discontinuous Galerkin approach

The framework is the Liouville–von-Neumann equation (LVNE) uti-
lizing a spatially constant effective mass Hamiltonian and a Hartree–
Fock potential. The LVNE is first transformed into center-mass coordi-
nates 𝜒 and 𝜉 yielding the following expression [6]:
𝜕
𝜕𝑡
𝜌(𝜒, 𝜉, 𝑡) = 𝚤 ℏ

𝑚
𝜕
𝜕𝜒

𝜕
𝜕𝜉
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𝑞
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𝐺(𝜒, 𝜉, 𝑡)𝜌(𝜒, 𝜉, 𝑡). (1)

Here, 𝜌 denotes the statistical density matrix and the term 𝐺 includes
the potential energy 𝑉 , which contains the Hartree–Fock potential and
the externally applied bias [7]. In detail, the term 𝐺 is defined as [6]

𝐺(𝜒, 𝜉, 𝑡) = 𝑉
(

𝜒 + 1
2
𝜉, 𝑡

)

− 𝑉
(
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2
𝜉, 𝑡

)

− 𝚤𝑊 (𝜉). (2)

To suppress artificial reflections at boundaries in 𝜉-direction, a complex
absorbing potential 𝚤𝑊 (𝜉) as described in [6] is introduced in (2).
Eq. (1) is then approximated with respect to the coordinate 𝜉 utilizing
a finite volume technique with an equidistant grid characterized by
an even number of 𝑁𝜉 cell points symmetrically distributed around
𝜉 = 0. Alternatively, the DG method could be applied. However, in
doing so, one has to take into account that a thorough investigation
of the numerical flux in 𝜒-direction cannot be done, since a second
numerical flux for the 𝜉 domain is needed. The resulting relation is
conceptually characterized by matrices �̃� and �̃� [6], both showing a
dimension of 𝑁𝜉 𝑥 𝑁𝜉 :

𝜕
𝜕𝑡
𝝆(𝜒, 𝑡) = �̃� 𝜕

𝜕𝜒
𝝆(𝜒, 𝑡) − �̃�(𝜒, 𝑡)𝝆(𝜒, 𝑡) (3)

Ultimately, a basis transformation is required to allow a distinction
between forward and backward propagating waves. Thus, basis vec-
tors 𝜱𝒏 together with their expansion functions 𝑐(𝜒, 𝑡) are introduced.
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The basis vectors are orthonormal, such that 𝜱†
𝑛 ⋅ 𝜱𝑚 = 𝛿𝑛,𝑚 holds.

Accordingly, the transformation

𝒄(𝜒, 𝑡) = 𝜱† ⋅ 𝝆(𝜒, 𝑡) (4)

is applied by introducing the matrix 𝜱 containing the basis vectors 𝜱𝑛.
Exploiting the transformation (4), the QLTE reads as
𝜕
𝜕𝑡
𝒄(𝜒, 𝑡) = 𝜱†�̃�𝜱 𝜕

𝜕𝜒
𝒄(𝜒, 𝑡) −𝜱†�̃�(𝜒, 𝑡)𝜱 ⋅ 𝒄(𝜒, 𝑡) (5)

with 𝜦 = 𝜱†�̃�𝜱 being a diagonal matrix containing the eigenvalues 𝜆𝑗
of the matrix �̃� when the basis vectors 𝜱𝒏 are its eigenvectors.

To solve (5), the DG concept is applied, whereas the computational
domain 𝛺𝜒 ([0, 𝐿𝜒 ]) is subdivided in elements denoted by 𝑘. Each
component 𝑐𝑗 (𝜒, 𝑡) of the vector 𝑐(𝜒, 𝑡) is expanded based on a nodal
element approach with 𝑁𝑝 nodal points for each element 𝑘. Test
functions 𝑙𝑖(𝜒) of the order 𝑁 = 𝑁𝑝 − 1 must be introduced and
(5) is multiplied with each of the defined test functions 𝑙𝑚(𝜒). The
resulting relations are integrated with respect to 𝜒 for each element 𝑘.
Additionally, a similar nodal expansion of the matrix element functions
𝐺𝑗𝑝(𝜒) ⋅ 𝑐𝑝(𝜒) with regard to the matrix 𝜱†�̃�(𝜒, 𝑡)𝜱 in (5) is applied.
Contrary to conventional FE approaches, a single-valued numerical flux
𝑓𝑘,∗
𝑗 (𝜒, 𝑡) = 𝜆𝑗 ⋅ 𝑐

𝑘,∗
𝑗 (𝜒, 𝑡) is introduced to establish the coupling between

all elements. To arrive at the local strong formulation, (5) is integrated
twice utilizing Green’s theorem. The following expression is obtained
for each element-related function 𝑐𝑗 (𝜒, 𝑡):

𝑴𝑘𝜕𝑡𝒄𝑘𝑗 − 𝑺𝑘𝒇𝑘
𝑗 +𝑴𝑘

𝑁𝜉
∑

𝑝=1
diag(�̃�𝑘

𝑗𝑝)𝒄
𝑘
𝑝

= ∮𝜕𝐷𝑘
(𝑓𝑘

𝑗 (𝜒, 𝑡) − 𝑓𝑘,∗
𝑗 (𝜒, 𝑡))�̂�𝒍(𝜒). (6)

As for standard FE approaches, a stiffness matrix 𝑺𝑘 and a mass matrix
𝑴𝑘 are introduced. The vectors 𝒄𝑘𝑝 and 𝒇𝑘

𝑝 contain the nodal values
for element 𝑘 and the vector 𝒍(𝜒) the test functions 𝑙𝑖(𝜒), respectively.
The diagonal elements of diag(�̃�𝑘

𝑗𝑝) contain the nodal values of the
matrix element functions 𝐺𝑘

𝑗𝑝. The term on the right-hand side of (6)
is approximated assuming an upwind flux according to

∮𝜕𝐷𝑘
(𝑓𝑘
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𝑗 (𝑥, 𝑡))�̂�𝑙(𝑥)
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2

)

�̂�−𝑟 [[𝑢]]𝑟𝒆𝑟 −
(𝜆𝑗 + |𝜆𝑗 |

2

)

�̂�−𝑙 [[𝑢]]𝑙𝒆𝑙 . (7)

with 𝒆𝑟 = (0,… , 0, 1)𝑇 and 𝒆𝑙 = (1, 0,… , 0)𝑇 . Here �̂�−𝑟∕𝑙 denote face
normals pointing from the edges of an element to its interior and the
values [[𝑢]]𝑟∕𝑙 = �̂�−𝑐− + �̂�+𝑐+ indicate the jumps, whereas 𝑐−∕+ are
the interior and exterior values and 𝑛−∕+ are the corresponding face
normals with regard to the edges of the element, respectively. The
inflow and outflow boundary conditions are set according to Fermi
statistics. Finally, along with the use of (7), the relation (6) for each
expansion function 𝑐𝑗 (𝜒, 𝑡) applied onto each element can be assembled
to arrive at the system equation.

3. Validation and computational efficiency

To validate the approach, a RTD device as shown in Fig. 1 is
chosen. The computational domains in 𝜒 and 𝜉-direction are 𝐿𝜒 =
60 nm and 𝐿𝜉 = 100 nm, respectively. Furthermore, the 𝜒-domain
is divided into 𝑁𝜒 = 60 elements, where each 𝜒-element is further
characterized by 𝑁𝑝 = 3 nodal points, while 𝑁𝜉 = 120 is the number of
cells in 𝜉-direction. For thermal equilibrium and assuming a flatband
case, the real part and the imaginary part of the statistical density
matrix are calculated and shown in Fig. 2 and Fig. 3, respectively.
The results depicted are in good agreement with the results shown
in [7]. Particularly, the real part of the density matrix matches with
the results obtained in [7]. Upwind fluxes cause minor deviations in
2

Fig. 1. Schematic of the RTD under investigation.

Fig. 2. Real part of the statistical density matrix 𝜌.

Fig. 3. Imaginary part of the statistical density matrix 𝜌.

the imaginary part of the statistical density matrix (Fig. 4) as explained
in [7], which should be theoretically zero for thermal equilibrium. The
error is a consequence of the overestimation of diffusion effects [7].
As such, the integral contributor to the occurring error is caused by
the approximation of the diffusion term �̃� 𝜕

𝜕𝜒 𝝆(𝜒, 𝑡) in (3) and can
be alleviated by increasing the number of elements in 𝜒-direction.
Fig. 4 shows that the imaginary part of the statistical density matrix
is reduced by a magnitude of 10, when the number of discretization
elements 𝑁𝜒 and 𝑁𝜉 are doubled. As a consequence, the error con-
verges to zero when applying a finer discretization in 𝜒-direction.
Further optimization can be undertaken according to [8]. Finally, the
DG scheme is conceptually suited for solving the QLTE. To demonstrate
the computational efficiency, computation times of the DG-approach
are compared to those of an FV-approach, for which linear equation
systems have to be solved. Particularly the transient solution is of
interest, as with the time dependent case the switching behavior and
non-linear effects can be analyzed. The transient solution of the DG ap-
proach was calculated utilizing the second order (RK2) and fourth order
(RK4) method, respectively. To assess the stability of both methods, the
eigenvalues of the time dependent system matrix containing an upwind
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Fig. 4. Imaginary value of the statistical density matrix 𝜌 for 𝑁𝜉 = 240, 𝑁𝜒 = 120.

Fig. 5. Spatially time dependent carrier density 𝑛.

Fig. 6. Computational time for the FV method (a) as well as for the Runge Kutta
methods RK2 and RK 4 (b).

flux were analyzed. The complex absorbing potential leads to a decay of
the distribution function at the edges of the computational domain [2]
3

and, therefore, enforces the appearance of an eigenvalue spectrum with
eigenvalues consisting of purely negative real parts. To allow for an
objective comparison, the average computation time for each time step
for the transient solution is calculated. The number of discretization
elements has a major impact on the computation time. Accordingly, as
for example, the number of 𝜉-elements will be varied between 50 and
350, in 50 block increments for the FV-approach, RK2, and RK4 method.
The previously mentioned parameters 𝐿𝜒 , 𝐿𝜉 , 𝑁𝜒 , and 𝑁𝑝 remain un-
changed. The transient simulation starts with the density matrix in
thermal equilibrium (see Fig. 2) and converges to the statistical density
matrix under the assumption of an externally applied bias of 0.2 V
under steady state conditions, when a time dependent step function
is applied for the external bias having an amplitude of 0.2 V. This
statement can be concluded from the evolution of the carrier density
over time as shown in Fig. 5, which can be extracted from the diagonal
of the statistical density matrix for each time step. Depending on 𝑁𝜉 ,
the progression of the computation time for the FV methodology is ex-
ponential (Fig. 6a). Similarly, the RK2 method progresses exponentially
with the increase of 𝑁𝜉 , although the rate is not as pronounced as in
the FV scheme and the RK4 algorithm shows a more linear trajectory
(Fig. 6b). Due to the fact that the DG approach allows the application of
an explicit method for the calculation of the transient solution, the RK2
and RK4 method show a decrease in computation time compared to the
FV methodology, which requires the application of implicit methods.

4. Conclusion and outlook

The DG methodology achieves satisfactory results compared to
other conventional methods for solving carrier transport problems,
while significantly reducing the computation time especially for tran-
sient problems.
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