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A B S T R A C T

The ensemble Monte Carlo (EMC) method is a powerful and widely used technique for modeling carrier
transport in semiconductors in which one can easily take into account band structure and a variety of
scattering mechanisms. In the usual implementations of EMC, the semiclassical electron dynamics is coupled
self-consistently to the electrostatic field and this suffices for most devices. However, for high power, high
current semiconductor device applications the electrostatic approximation is often not adequate and the full
electromagnetic (EM) equations must be solved in fully-coupled fashion. We report on the development of
a fully self-consistent, time-domain, EM-EMC simulator for two- and three-dimensional device simulations
in which we also address a well known drawback of these methods, their computational intensiveness, by
producing a GPU implementation.
1. Introduction

High-power, high-current semiconductor devices, such as fast open-
ing switches or high-power amplifiers, often exhibit effects such as
strong magnetic fields, filamentation and instability that are more often
associated with vacuum plasmas [1] and high current-density charged-
particle beams. In those applications, a robust numerical method that
is widely used to model the complex interaction dynamics between
electromagnetic fields and classical charged particle distributions is the
electromagnetic particle-in-cell (EM-PIC) method. This time-domain
technique solves simultaneously Maxwell’s equations for the electric
and magnetic fields (represented across the cells of a spatial com-
putational grid) and the classical equations of motion for a particle
distribution in phase space (represented by the positions and momenta
of a particle ensemble). These two systems of equations are coupled
self-consistently via the Lorentz forces acting on the charged particle
ensemble and the resulting electromagnetic current density distribution
driving the EM field solution. In this paper we use the EM-PIC method
as the basis to create a fully self-consistent electromagnetic ensemble
Monte Carlo (EM-EMC) model for semiclassical electron dynamics in
semiconductors for high-power device simulation. Because the EMC
method incorporates the microscopic physics, the EM-EMC method can
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be particularly useful for predicting the potential of new semiconductor
materials for high-power device applications.

A convenient starting point for our development of a particle-based
simulator of solid-state plasma processes is an existing 3D EM-PIC
simulation framework called Neptune [2], which was created for mod-
eling high-power, relativistic, vacuum electronic devices. This code
already includes a GPU implementation for computational efficiency
and provides a flexible scripting language interface to customize device
geometry and operating parameters during simulations.

Solving Maxwell’s equations in place of Poisson’s equation intro-
duces a number of challenges. While Poisson’s equation is defined in
terms of electric potential and charge density distributions, Maxwell’s
time-dependent equations fundamentally use electromagnetic fields
and currents. Neptune’s EM-PIC algorithm preserves the charge con-
tinuity equation exactly so that Poisson’s equation remains satisfied
implicitly for the duration of the simulation. The character of the
field equation solution has also changed from elliptic to hyperbolic.
The time integration of electromagnetic fields in Neptune uses an
explicit leapfrog scheme related to the Finite Difference Time Domain
(FDTD) method, for which the maximum time step is constrained by
the Courant–Friedrich–Lewy (CFL) condition for stability. For typical
dimensions and particle velocities found in semiconductor simulations
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this leads to time steps much shorter than when using a Poisson solver,
but at a lower computational cost per time step due to locality in the
discrete equations. In the present implementation, the particle time step
is taken to be the same as the electromagnetic time step and, because
of this, the implementation of the scattering process in our model
differs from that in conventional EMC implementations [3,4]. Rather
than computing a time-of-flight until the next scattering event takes
place, the probabilities of each scattering mechanism are evaluated
independently each time step.

2. EM-EMC algorithm

The EM-EMC algorithm follows initially a similar scheme to the
EM-PIC method that is implemented in the Neptune simulation code.
An outline of the formulation and implementation are provided in this
section.

2.1. EM-PIC time-domain model

Maxwell’s time-dependent equations, in macroscopic form, describe
the evolution of electromagnetic fields in a volume containing regions
of dielectric and/or permeable materials:
𝑑
𝑑𝑡

𝐵⃗ = −∇ × 𝐸⃗ 𝐸⃗ = 𝜀−1𝐷⃗

𝑑
𝑑𝑡

𝐷⃗ = ∇ × 𝐻⃗ − 𝐽 𝐻⃗ = 𝜇−1𝐵⃗

he numerical solution first discretizes the fields on a Cartesian spatial
rid according to the Yee scheme: components of electric fields (𝐸⃗&𝐷⃗)
re associated with grid cell edges and of the magnetic fields (𝐵⃗&𝐻⃗)
ith cell faces. This ensures that all of the discrete spatial finite-
ifference terms are correctly centered. Discretization in time follows
n explicit leapfrog time-integration scheme with a fixed time step, 𝛥𝑡:
he electric and magnetic fields are defined at alternate half time-steps
nd are updated sequentially to complete a full time integration step.
his scheme is stable when 𝑐𝛥𝑡 is sufficiently small to satisfy the CFL
ondition, related to the spatial grid cell size. The implementation in
eptune parallelizes each field update step with respect to the cells of

he 3D grid.
In both the EM-EMC and EM-PIC methods, a set of simulation

articles is introduced to represent the distribution of charges in phase
pace. Each simulation particle carries a relative weight, which scales
ts charge, mass, energy and momentum relative to the physical particle
hat it represents. For each particle in an ensemble, its motion in an
lectromagnetic field is governed by the following general scheme:
𝑑
𝑑𝑡

𝑥⃗ = 𝑣 𝑣 = ∇𝑝 (𝑝)

𝑑
𝑑𝑡

𝑝 = 𝐹 𝐹 = 𝑞(𝐸⃗(𝑥⃗) + 𝑣 × 𝐵⃗(𝑥⃗))

he dependence of velocity on the particle momentum is defined in
erms of an energy–momentum relation, (𝑝). For relativistic particles
oving in vacuum this relation is:

2 = 𝑐2
(

𝑝 ⋅ 𝑝 + 𝑚2𝑐2
)

⇒ 𝑣 = 1
√

1 + 𝑝⋅𝑝
𝑚2𝑐2

𝑝
𝑚

he numerical formulation uses the same leapfrog time-integration
cheme as for the fields, with the same time step, and with position
nd momentum defined on alternate half time steps. The formulation
s implicit due to the velocity and field terms in the Lorentz force
quation, but may be made explicit using the method of Boris. The im-
lementation in Neptune computes time-step updates to the momentum
nd position for each particle in parallel across the available GPU or
PU cores.

To complete the EM-PIC formulation, the current density distribu-
ion is calculated from the particle ensemble during the particle update
tep:
⃗(𝑥⃗) =

∑

𝑞𝑖𝑣𝑖 𝛿
3(𝑥⃗ − 𝑥⃗𝑖)
2

𝑖

This then couples the motion of charged particles back to the electro-
magnetic fields in the next time step via the current density source
term. This source term is discretized such that the discrete current
exactly conserves the charge represented by the particles as they move
through the simulation volume.

2.2. Semiconductor band model

To adapt the model to semiclassical carrier dynamics in semiconduc-
tor materials, we replace the energy–momentum relation in Neptune
with one representing the semiconductor band structure, with the
momentum related to the wavevector, 𝑝 = ℏ𝑘⃗.

In our initial implementation of the EM-EMC method we have
implemented a single-band, non-parabolic Kane model for electrons:

(1 + 𝛼) = 𝑝 ⋅ 𝑝
2𝑚∗ = 0 ⇒ 𝑣 = 1

√

1 + 4𝛼0

𝑝
𝑚∗

where 𝛼 determines the non-parabolic term, and 𝑚∗ is the effective
mass. The remainder of the EM-PIC model carries over to the EM-EMC
model.

2.3. Scattering

The model that we use for scattering of charge carriers in semicon-
ductor materials, due to acoustical and optical phonon interactions and
impurities, is similar to that used in conventional electrostatic EMC
methods but the implementation must be adapted for the EM-EMC
method.

In the electrostatic EMC method, the interval between scattering
events may be shorter than the time step between updates to the
numerical field solution. Therefore the particle path between field
updates is evaluated as a sequence of free flights between scattering
events while keeping the field solution fixed. Each free flight interval
is evaluated from a random distribution, based on the total scattering
probability for all scattering processes, and the actual scattering process
is then selected at random based on their relative probabilities [5].

In the EM-EMC method, the CFL condition dictates a much shorter
time step between field updates. Consequently, the probability of any
scattering event taking place within a single time step is small. Particles
may be evolved in time just as in the EM-PIC model, using the same
time step as for the fields, except that after each particle momentum
update the scattering probabilities for each process during that step
are evaluated, and a specific scattering event (or no scattering event)
selected according to a random distribution. If a scattering event occurs
then the scattered particle parameters are computed exactly as in the
electrostatic case and used in the next time step. The implementation in
Neptune uses a proven parallel random number generator (PRNG) [6]
to ensure a truly random sample is used.

2.4. Initial conditions

Prior to the start of a simulation each cell of the Cartesian grid is
assigned a material type according to the user-defined device geometry,
which may be vacuum, conductor, insulator or semiconductor. The
permittivity and permeability of each cell is evaluated to define the
discrete electromagnetic constitutive relations required by the field
solution. The electromagnetic fields in the simulation are initialized
everywhere to be zero.

The initial distribution of simulation particles is created to represent
free carriers present in doped regions of semiconductor, spatially dis-
tributed according to the specified doping profile and initialized with a
momentum distribution derived from the lattice temperature. The field-
free condition implies local charge neutrality, so that each initial free
charge effectively has an associated bound charge of the opposite sign

fixed at its initial position.



Solid State Electronics 199 (2023) 108487S.J. Cooke and M.G. Ancona
Fig. 1. Longitudinal electric field strength in a quasi-1D 𝑛+—𝑛—𝑛+ Si diode after
steady-state operation is reached (red is +ve, green is zero, blue is −ve). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

2.5. Device simulations

Each simulation begins in a charge-neutral state with no applied
voltages, and an ensemble of simulation particles distributed according
to the donor density distribution. To introduce voltages to the device
contacts, controlled currents are applied between electrodes to transfer
charge and thereby generate electric fields in the device, which then
interact self-consistently with the simulation particle ensemble until
a steady-state solution is reached. Simulation particles are added and
removed at the electrodes during the simulation to model Ohmic
contacts.

3. Simulation examples

The Neptune implementation of the EM-EMC algorithm can perform
parallel calculations using either CPU (multi-core) or GPU (many-core)
processors, making maximum use of parallelism in each case to reduce
execution times. All simulations were performed with a Supermicro
workstation, with dual Intel Xeon Gold 6136 CPUs (2×12 = 24 physical
cores; 3.0–3.7GHz clock rate) and an Nvidia Titan RTX GPU (4608
CUDA cores; 1.35–1.77GHz clock rate). Single precision floating point
calculations were used to maximize performance.

The implementation of the EM-EMC simulator is three-dimensional,
but in our initial testing we perform 2D device simulations by con-
straining the third dimension of the grid to just two grid cells. The
Cartesian grids may be non-uniform on each axis, and the simulation
time step is computed automatically to ensure stability. The following
two examples illustrate simulations of a Silicon diode and a Silicon
MESFET.

3.1. Silicon diode

For the first example we model the 𝑛+—𝑛—𝑛+ Si diode shown in
Fig. 1, having conducting electrodes at each end. The donor densities
in each of the three regions are 5⋅1017 cm−3, 2⋅1015 cm−3, and 5⋅1017 cm−3

respectively. The upper region is vacuum.
Charge is transferred between the electrodes during the simulation

to apply 1V across the diode and the simulation is continued to
reach a steady state solution. Particles are injected at the cathode to
maintain the local carrier density. Fig. 1 illustrates the final steady state
solution, showing the longitudinal electric field component and particle
ensemble distributions.

The following table summarizes statistics for the 2D diode simula-
tion:

Grid size: 400 × 97 × 2 cells
Simulated time: 3.5 ps

Time step, 𝛥𝑡: 5.3 ⋅ 10−6 ps
Particle weight: 0.01
3

Average particle load: 41,000
Fig. 2. Electric field magnitude and particle distribution in a 2D Si MESFET simulation
after reaching steady-state operation.

Execution time using the GPU implementation was 2.9min (4608 cores),
compared to 20.3min using the parallel CPU implementation (24 cores).
Particle calculations represent approximately 40% of the execution
time.

3.2. Silicon MESFET

In our second example we model a three-electrode Si MESFET
device geometry, shown in Fig. 2. Source and drain electrode lengths
are 0.1 μm, the central gate electrode length is 0.2 μm, with electrodes
separated by 0.1 μm. The simulation thickness is 0.01 μm. The donor
density in the semiconductor volume is 1 ⋅ 1017 cm−3, except under the
source and drain electrodes where it is 3⋅1017 cm−3 to a depth of 0.05 μm.
The upper region is vacuum.

Charge is transferred between the drain and source electrodes to
set up a potential difference of 1V, generating a flow of carriers in
the device, while the gate electrode is left floating. Fig. 2 illustrates
the final steady state, showing the electric field magnitude and final
particle ensemble distributions.

The following table summarizes statistics for the 2D MESFET simu-
lation:

Grid size: 120 × 120 × 2 cells
Simulated time: 6.0 ps

Time step, 𝛥𝑡: 9.2 ⋅ 10−6 ps
Particle weight: 0.002

Average particle load: 52,000

Execution time using the GPU implementation was 2.7min (4608 cores),
compared to 26.2min using the parallel CPU implementation (24 cores).

As a final measurement of the code performance, the same device
was simulated in 3D by extruding the 2D model geometry to a simula-
tion thickness of 0.4 μm. The following table summarizes statistics for
the 3D MESFET simulation:

Grid size: 120 × 120 × 80 cells
Simulated time: 6.0 ps

Time step, 𝛥𝑡: 9.2 ⋅ 10−6 ps
Particle weight: 0.002

Average particle load: 2, 090, 000

Execution time using the GPU implementation was 163.7min.

4. Conclusion

We have adapted an existing GPU-accelerated EM-PIC simulation
code to perform simulations of charge transport in semiconductor
device geometries using an electromagnetic ensemble Monte Carlo
algorithm. Initial 2D and 3D simulations of a simple 𝑛+—𝑛—𝑛+ Si diode
and a Si MESFET device geometry show qualitative results consistent
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with the expected device operation, and illustrate both the required
parameters for stable simulations and the code performance charac-
teristics. The results indicate that the EM-EMC algorithm implemented
for a modern GPU processor will be able to provide effective device
simulations with acceptable simulation times.
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