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A B S T R A C T

Machine learning (ML) interatomic potentials have received a lot of interest in recent years, motivated by
their high accuracy at low computational costs. However, these potentials tend to overfit, which threatens their
reliability. This work proposes a systematic solution to this problem, by augmenting ML potentials with simpler
auxiliary potentials, which aim at ensuring that the physics behind interatomic interactions are respected. The
versatility of the proposed solution is demonstrated by developing a ML force field for amorphous silicon
dioxide (a-SiO2), in which a main potential is augmented with a set of simpler pairwise short-range auxiliary
potentials. The resulting potential exhibits a significant improvement in transferability and scalability, at only
a moderate increase in computational costs.
1. Introduction

The interest in machine learning (ML) interatomic potentials has
intensified over the past decade. These interatomic potentials serve
as an alternative to more expensive ab initio methods like density
functional theory (DFT), for which computational costs severely nar-
row their application to relatively small systems (100s of atoms) and
short simulation times (10s of ps). The progression of these alternative
potentials is further aided by readily available software packages [1–
4]. However, the development of transferable ML interatomic potentials
remains a topic of active research in this field. In this context, we refer
to transferability as the ability of a ML potential to retain its accuracy
when employed in tasks not trained for (e.g., to accurately reproduce
forces, despite only training on energies). One of the main obstacles
which weakens the transferability of ML potentials is overfitting, an
undesired statistical phenomena in which ML models present a high
accuracy on training data, but perform poorly in previously unseen
testing data and, therefore, in real applications.

We implement our potentials as instances of the established Gaus-
sian approximation potential (GAP) [5], a type of kernel-based model
successfully used in previous studies, to develop highly accurate and
computationally efficient interatomic potentials for various materials
and applications [6–8]. This model assumes that similar local atomic
configurations give similar contributions to the total potential energy.
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It estimates the potential energy of a given atomic configuration by
comparing it to those provided in a training dataset. This comparison
is done by means of a similarity measure function or kernel, which gives
this type of ML models its name. In order for a GAP, or any other
ML model used in an interatomic potential, to be able to compute the
potential energy of an atomic structure, a mathematical representation,
or descriptor, of such atomic structure must be provided first. This
model and its implementation in ML interatomic potentials are depicted
in Fig. 1, where a descriptor of the input atomic structure is computed
and used as input to the ML model, which computes the potential
energy.

In this work, a systematic solution to mitigate the effects of over-
fitting is proposed, by augmenting a GAP with a set of independent
repulsive-only potentials, in contrast to previous solutions found in the
literature [6,9]. We will demonstrate our proposed solution by building
a potential for amorphous silicon dioxide (a-SiO2). Our potential will
be validated against DFT calculations and compared to the results
obtained with a traditional ML potential.

2. Methodology

As previously mentioned, a ML interatomic potential is composed
of a descriptor and a ML model. A descriptor computes a mathematical
representation (i.e., a vector or matrix) of a given atomic structure
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Fig. 1. (a) Schematic of a GAP, a ML model which computes the potential energy of
a given atomic configuration as the weighted sum over the similarity measurements
between the given atomic configuration and those in a training dataset. The similarities
are measured by a kernel. Training this model is equivalent to finding the optimal
weight values (𝛼1 , 𝛼2 ,… , 𝛼𝑛). (b) Workflows for a traditional potential built with this
ML model (left) and our proposed composite interatomic potential (right). (c) Schematic
of the proposed composite potential, augmenting the main potential with an auxiliary
potential.

and serves as an intermediate between the atomic structure and the
ML model. However, not any possible mathematical representation
is valid as a descriptor, as they must be invariant under translation
and rotation of the atomic structures, as well as under permutation
of identical atoms. Such properties aid in training a ML model to
compute a property from atomic structures, since, if atomic coordinates
were used instead of a descriptor, the ML model would have to learn
that any possible translation, rotation or atomic permutation in an
atomic structure corresponds to the same atomic property. Namely, the
ML model would have to learn that an infinite number of different
inputs correspond to the same single output, therefore rendering the
training process unfeasible. Examples of frequently used descriptors
are smooth overlap of atomic positions (SOAP) [10] and atom-centered
symmetry functions (ACSF) [11]. Descriptors can be either global (they
represent the entire atomic system) or local (they represent the local
or near environment of a given atom in the system), with the latter
being the most commonly used for ML interatomic potentials. The ML
model is trained to find a functional relationship between a descriptor
(highly-dimensional) and the corresponding potential energy (scalar-
valued) of the atomic structure which it represents. In a traditional
ML interatomic potential, the total potential energy of a given atomic
system is approximated by a sum of local energy contributions from
every atom, computed by a single ML model [12],

𝐸total =
Atoms
∑

𝑖
𝐸𝑖(𝒅𝑖),

where 𝒅𝑖 is a local descriptor for the environment of the 𝑖th atom and
𝑬𝑖 is its local contribution to the total potential energy, computed by
the ML model from the local descriptor. We propose to build a potential
which computes these local energies as a composite set of multiple
components, i.e.,

𝐸𝑖 =
Models
∑

𝑗
𝐸𝑗
𝑖 (𝒅

𝑗
𝑖 ),

where 𝑗 runs over all components of the final potential. Each compo-
nent can either be a non-parametric potential; or a ML model paired
with different local descriptors, allowing for varying degrees of com-
plexity.

In this work, we build an interatomic potential for a-SiO2 composed
of a complex main model responsible for giving accurate results for
the atomic systems of interest and a simpler auxiliary potential, which
represents the basic physics through pairwise short-range interactions,
as shown in Fig. 1(c).

𝐸 = 𝐸main(𝒅main) + 𝐸aux(𝒅aux)
2
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Fig. 2. Initial dataset for training and testing the main ML potential, created using
the melt-and-quench technique and the ReaxFF force field. The MD begins with a
crystalline SiO2 structure, which is melted up to 5000 K and thereafter quenched back
to 300 K. Once the dataset is created, the energies are recalculated on a subset using
DFT. Blue: Crystalline phase (C). Red: Liquid phase (L). Green: Amorphous phase (A).
The objective of the initial dataset is to provide a sampling of the PES of interest as
comprehensive as possible. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The main ML potential is responsible for the intricate details of
the potential energy surface (PES) of the atomic systems of interest.
On the other hand, the auxiliary potential is repulsive-only, meaning
that it only produces positive energies. The closer two atoms are to
one another, the higher the computed energy will be. This poten-
tial matches the positive part of the pairwise dissociation curve, as
obtained with DFT, by using a simple two-body descriptor with a
short and smooth cut-off, as implemented in QUIP (https://github.com/
libAtoms/QUIP) [3,13]. The sum of both energies results in the energy
computed by our proposed composite ML interatomic potential. In our
implementation, both potentials are realized as GAPs.

The main potential employs the more sophisticated and highly-
dimensional SOAP [10] descriptor. The training dataset for the main
GAP was created by running molecular dynamics (MD), according to
the melt-and-quench technique [14] within the LAMMPS engine [15].
A defect-free 216-atoms SiO2 system was melted at 5000 K and subse-
quently quenched to 300 K, using the classical force-field ReaxFF [16]
with a time-step of 0.25 fs. The process is depicted in Fig. 2. The
resulting trajectory was sequentially sub-sampled to a training dataset
of only 1500 atomic configurations, for which the energies were cal-
culated with DFT, using the PBE functional [17] in the CP2K software
package [18].

Ideally, the training dataset must be comprehensive, while contain-
ing only atomic configurations relevant to the intended application for
which the ML interatomic potential will be used. In other words, the
atomic environments contained in it must represent a faithful sampling
of the PES subset relevant for a particular application. An under-
sampling of the possible atomic environment space would undoubtedly
result in poor ML prediction accuracy, while over-sampling results in
an excessive computational cost. Furthermore, the sampling should not
be biased towards any particular area of the PES, in order not to over-
sample a sub-set of the possible atomic configurations space, while
under-sampling the rest. It is for this reason that the training dataset
is composed of a sub-set of the atomic configurations obtained by per-
forming MD. The testing dataset is composed of 1000 randomly selected
atomic configurations from the same melt-and-quench MD trajectory.

https://github.com/libAtoms/QUIP
https://github.com/libAtoms/QUIP
https://github.com/libAtoms/QUIP
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Fig. 3. Testing the potential energy accuracy for the traditional (red) and the composite
(blue) ML potentials against DFT. The dashed black line represents the ideal results, in
which all energy predictions would be equal to the DFT calculations. The closer the dots
are to this line, the better the results are. This reference makes the 𝑋-axis immaterial.
The results show a high accuracy for both potentials and virtually no difference between
them. An example of the atomic structures used for testing is shown in the bottom-right
sub-panel. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

It is important to notice that no atomic configuration belonging to the
training dataset was used in the testing dataset.

The main potential was trained on the residual between the DFT
energies and the predictions of the auxiliary potential for the atomic
configurations in the training dataset. The training was performed using
the software package QUIP. The descriptor for the auxiliary potential
was defined using smooth cut-offs: rSiSicut = 1.60 Å, rSiOcut = 1.10 Å and
rOOcut = 0.80 Å. The SOAP descriptor for the main GAP was constructed
with nmax = 6, lmax = 6 and rSOAPcut = 4.0 Å. Therefore, the main potential
acts on the entire atomic neighborhood, while the auxiliary potential
acts only if two atoms are unphysically close to one another.

3. Results and discussion

Following the traditional approach, a single GAP was trained on the
dataset used to train the main ML model of our proposed composite po-
tential. This potential was thereafter used to evaluate the performance
of our proposed composite ML interatomic potential. In the following
tests, both potentials were used to perform a number of tasks and
their results were compared to one another, taking DFT calculations
as reference.

The first test for the composite and traditional ML potentials was
to compute the potential energies of the 1000 atomic configurations in
the testing dataset. The results of each ML potential were compared to
DFT calculations and they are shown in Fig. 3. Our proposed composite
ML potential yielded an mean absolute error (MAE) of 4.7 meV/atom,
therefore rendering it slightly more accurate than the traditional po-
tential, which yielded a MAE of 4.8 meV/atom. In practical terms,
this negligible difference in accuracy between both potentials means
that they should produce near identical results when used in real
applications. However, the following tests will demonstrate that this
first impression is wrong and that the simple auxiliary potential plays
an important role in the overall ML potential.

The second test employed both ML potentials to run the exact
same melt-and-quench MD. This MD simulation begins with an initially
defect-free crystalline structure, which is melted at 5000 K for a period
of 30.000 steps (step-size = 1 fs). Once melted, the atomic system
remains at a temperature of 5000 K for another 20,000 steps and it
is then quenched back to 300 K within a period of 100,000 steps. The
final result of this melt-and-quench MD is an a-SiO2 structure, as shown
in Fig. 4. The structures produced by the traditional model suffer from
unphysical atomic cluster formations, as is apparent from the radial
density functions (RDFs). In contrast, our composite potential shows
3

Fig. 4. Panel comparing our proposed framework results with those of a traditional
ML interatomic potential, built as a single GAP. Both potentials were used to run the
same MD, as specified in (a). Two of the resulting structures when using our proposed
approach are presented in (b). Resulting structures from using the traditional ML
potential are presented in (c) and (d), together with examples for unphysical behavior
found in them. The RDFs for one of the structures built with our approach and one
built with the traditional ML potential are presented in (e), together with the reference
from the training dataset. As it can be seen, the composite potential performs much
better when compared against the DFT reference.

excellent agreement with the DFT reference structure. The reason for
this is that training datasets built by running MD rarely contain short-
range interactions, as they are high in energy and therefore unlikely
to be present in the MD trajectory. This prevents the traditional ML
potential from learning that short interatomic distances correspond to
high energies, resulting in the unphysical clustering seen in the MD
results. Since this information is explicitly included in the auxiliary
potential, our approach is much more robust while also retaining a high
accuracy, with only little computational overhead (roughly 5%).

In order for a ML interatomic potential to be useful in practical
applications, it must be scalable. This means that it must retain its
accuracy for atomic systems noticeably larger than those used to train
it. Ideally, the ML interatomic potential would also be able to yield
accurate results when applied to tasks for which it was not specifically
trained on, thus indicating a successful and comprehensive training
process. As previously explained, accurate results for testing situations
similar to those found in the training, paired with inaccurate results for
different and new situations, would be a strong sign of overfitting.

To validate the transferability of our composite ML interatomic po-
tential, the vibrational density of states (VDOS) for one of the resulting
a-SiO2 structures was computed and compared against DFT results,
as shown in Fig. 5(a). The VDOS was determined by employing a
finite-difference scheme in order to expand the system’s PES to second
order around the minimum configuration [19]. We choose an a-SiO2
resulting from an MD run and relaxed it further using DFT, as well
as our composite potential. The finite difference calculations where
carried out by displacing a single atom by 0.01 Å along each coordinate
axis. The resulting force constant was then diagonalized to obtain the
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Fig. 5. Transferability tests for our proposed composite ML potential. (a) Computing
the VDOS and comparing it to DFT results. The good match is remarkable, considering
that the potential was not trained on forces. (b) Using the potential to create an a-
SiO2 structure 10 times the size of those used in the training dataset. No unphysical
clustering is present.

system’s normal modes and the corresponding phonon energies. As it
can be seen, there is excellent agreement between DFT and our ML
potential in predicting the VDOS for low-energy phonons. The fact that
our ML potential is able to produce accurate results for a task for which
it was not trained is a strong indication of a successful training process.
The VDOS differ for higher energies; however, if higher accuracy was
needed in that energy range, this could be improved by including forces
in the training process. Including forces in the training process would
provide the ML potential with the explicit value of the first derivative
of the PES with respect to the atomic coordinates and a much more
accurate representation of the PES curvature, drastically reducing the
numerical errors when computing the VDOS.

The training and testing datasets for this application were composed
of atomic configurations extracted from the same MD run, meaning
that they all share certain distinctive properties, such as the number of
atoms and the size of the cell in which they are contained. Moreover, as
all frames belong to the same trajectory, a certain degree of correlation
or similarity is therefore expected between the atomic environments of
the structures in both datasets. It is for these reasons that, to validate
the scalability of our composite ML potential, a new test was needed, in
which we employed it to perform MD on an atomic system 10-times the
size of the atomic structures found in the training dataset. The results
are shown in Fig. 5(b), where no signs of unphysical clustering were
found, therefore hinting at a successful training process and indicating
the scalability of our proposed composite ML interatomic potential. It is
important to highlight that these melt-and-quench MDs were performed
using a relatively high quench rate, which allowed them to quench
in barely 100,000 steps. A feat out of reach for several empirical
potentials. This, paired with the small dataset needed for training,
makes our ML potential highly computationally efficient.

4. Conclusions

ML models are a powerful tool for developing highly accurate
and computationally efficient interatomic potentials. However, when
underlying physical mechanisms are not explicitly taken into account,
their transferability is in question. In our proposed approach, the ML
potential is augmented by a set of simpler potentials. Results show
that this significantly reduces the unphysical behavior when facing
unexplored atomic environments, at a moderate increase in the com-
putational costs. Future improvements to this work would include the
incorporation of forces to the training process, as opposed to the use
of only energies; and the use of a wider range and variety of ML
4

models combined with different descriptors with different degrees of
complexity.
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