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A B S T R A C T

In this work, we propose a numerical stabilization method for a deterministic Boltzmann transport equation
solver based on a spherical harmonics expansion. In the proposed scheme, the approximate H-transformation,
a new energy variable approximately follows the total energy. An additional term is generated out of the free-
streaming operator and it should be implemented properly. When the kinetic energy is fixed, the distribution
function at that energy can be directly accessible at any time instance. The proposed scheme is implemented in
our in-house deterministic Boltzmann transport equation solver. The numerical simulation results demonstrate
that the proposed stabilization scheme works properly without any numerical difficulties.
1. Introduction

The drift-diffusion model, which has superior numerical stability
[1,2], has made great contributions to the theoretical study of semi-
conductor devices over the past decades and is still the workhorse of
today’s TCAD (Technology Computer-Aided Design). However, it is also
well known that the drift-diffusion model has some limitations when a
sharp change in the electric field appears in the device [3,4]. Although
the carrier mobility is frequently calibrated to reduce the error due to
the model deficiency, its calibration should be performed again when
a different device is simulated.

The Boltzmann transport equation is the semi-classical equation to
describe the carrier transport in the phase space. By solving the Boltz-
mann transport equation with an increased computational cost, carrier
transport can be described more accurately. Among various ways to
solve the Boltzmann transport equation, deterministic Boltzmann trans-
port equation solvers for the three-dimensional electron gas [5–8]
have been actively studied. In these studies, the electron distribution
function in the three-dimensional momentum space is calculated based
on the spherical harmonic expansion. By replacing the dependence on
the angle with harmonic coefficients, computational efficiency can be
improved.

In the deterministic Boltzmann transport equation, a stabilization
method that ensures a positive distribution function is required even
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under a strong electric field. The H-transformation [5], where the Boltz-
mann transport equation is written in the total energy space, provides
improved numerical stability because the derivative with respect to
the energy variable is completely eliminated. In the maximum entropy
dissipation scheme [7], an exponential function considering position-
dependent total energy is multiplied to improve the numerical stability.
For a multi-subband Boltzmann transport equation solver, where the
Schrödinger equation is additionally solved to obtain the subband
structure, other stabilization schemes can be found. A hybrid method
that uses both the phase (inelastic) space and the trajectory (elastic)
space according to the scattering mechanism has been proposed [9].
It is noted that numerical simulations directly in the phase space [10]
have been also reported.

Recently, the transient simulation results using an implicit time
marching technique have been reported in [11]. In [11], the maximum
entropy dissipation scheme was adopted. Although the
H-transformation is widely adopted in the steady-state simulation, the
scheme is not very convenient to be used in the transient simulation,
because the distribution functions at previous time instances must be
interpolated for the present potential profile. Therefore, the transient
simulation capability that is compatible with the H-transformation has
not been reported yet.
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In this study, in order to overcome the difficulties originated from
the stabilization scheme, an alternative stabilization scheme, the ap-
proximate H-transformation, is proposed. The organization of this
manuscript is as follows. In Section 2, the proposed simulation method-
ology is briefly described. In Section 3, numerical results are shown. In
Section 4, the research direction to which the proposed methodology
can be applied is discussed. Finally, the conclusion is made in Section 5.

2. Approximate H-transformation

It is assumed that the energy variable is uniformly discretized with
a spacing, 𝛥𝐸. For the sake of notational simplicity, the dependence on
the position variable is omitted whenever possible. For more complete
notations, readers are referred to [12].

Let us consider a case where an implicit time marching scheme
is adopted to discretize the time derivative term. At a given kinetic
energy, 𝜀, the time derivative of 𝑍𝑓 (a product of the density-of-states,
𝑍, and the distribution function, 𝑓 ) at a time instance, 𝑡𝑖, can be written
as

𝜕[𝑍𝑓 ]
𝜕𝑡

|

|

|

|𝑡=𝑡𝑖
≈ 𝑍(𝜀)

𝑁−1
∑

𝑗=0
𝑎𝑖,𝑗𝑓 (𝜀, 𝑡𝑖−𝑗 ), (1)

where 𝑁 is the order of the time-marching scheme, 𝑎𝑖,𝑗 is a coeffi-
cient connecting 𝑡𝑖 and 𝑡𝑖−𝑗 . For example, the simplest backward Euler
scheme (𝑁 = 2) has

𝑎𝑖,0 = −𝑎𝑖,1 =
1

𝑡𝑖 − 𝑡𝑖−1
. (2)

The free-streaming operator, 𝐿, is given by

𝐿𝑓 = 1
ℏ
𝐅 ⋅ ∇𝐤𝑓 + 𝐯 ⋅ ∇𝐫𝑓, (3)

where ℏ is the reduced Planck’s constant, 𝐅 is the force due to the elec-
tric field, and 𝐯 is the group velocity. Using the electrostatic potential,
𝐅 is written as

𝐅 = −∇𝐫𝑉 (4)

where 𝑉 is the band minimum energy. When the free-streaming opera-
tor is projected onto a quantity described by an index of 𝑙 (for example,
a pair of degree and order in the spherical harmonics expansion), the
projected operator can be written as

𝐿𝑓 ⟶
∑

𝑙′

𝜕
𝜕𝜀

[

𝐅 ⋅ 𝐀𝑙,𝑙′𝑓𝑙′
]

+ ∇𝐫 ⋅
[

𝐀𝑙,𝑙′𝑓𝑙′
]

− 𝐵𝑙,𝑙′𝑓𝑙′ , (5)

where 𝐀𝑙,𝑙′ and 𝐵𝑙,𝑙′ are coefficients connecting 𝑙 and 𝑙′ terms.
The conventional H-transformation uses the total energy, 𝐻 , which

is defined as

𝐻 = 𝜀 + 𝑉 = 𝜀 + (−𝑞𝜙 + 𝐸), (6)

where 𝑞 is the absolute elementary charge, 𝜙 is the electrostatic po-
tential, and 𝐸 is the energy difference between the band minimum and
the local reference energy. Variable transformation from 𝜀 to 𝐻 greatly
simplifies the free-streaming operator:

𝐿𝑓 ⟶
∑

𝑙′
∇𝐫 ⋅

[

𝐀𝑙,𝑙′𝑓𝑙′
]

− 𝐵𝑙,𝑙′𝑓𝑙′ . (7)

However, when the transient simulation is involved, the terms
related with the time derivation introduce some difficulties. Since
𝑉 (𝑡𝑖)−𝑉 (𝑡𝑖−𝑗 ) does not vanish in general, 𝑓 (𝜀 = 𝐻 −𝑉 (𝑡𝑖), 𝑡𝑖−𝑗 ) is not di-
rectly available. An interpolation procedure must be introduced. From
the present authors’ experience, with a finite resolution of numerical
discretization, the interpolation procedure deteriorates the numerical
stability.

An alternative approach based on the approximate H-transformation
is proposed. Instead of the time-varying band minimum energy, its
approximation, 𝑉 , is used to construct a new energy variable, ℎ,

ℎ = 𝜀 + 𝑉 . (8)
2

Fig. 1. Doping profile of a N+NN+ resistor simulated in this work. By increasing a
scaling factor (𝛼), various structures can be generated. In this work, the scaling factor
varies from 1 (1200-nm-long structure) to 10 (120-nm-long structure).

Fig. 2. DC IV characteristics of different structures with various scaling factors.
The calculation results with the conventional H-transformation (Black lines) and the
approximate H-transformation (Red dots) are almost identical.

Under this new transformation, an additional term appears out of the
free-streaming operator.

𝐿𝑓 ⟶
∑

𝑙′

(

𝐅 + ∇𝐫𝑉
)

⋅
𝜕
𝜕ℎ

[

𝐀𝑙,𝑙′𝑓𝑙′
]

+ ∇𝐫 ⋅
[

𝐀𝑙,𝑙′𝑓𝑙′
]

− 𝐵𝑙,𝑙′𝑓𝑙′ .
(9)

Fortunately, since the additional term is proportional to 𝑉 − 𝑉 , which
is small for a reasonable 𝑉 , a suitable discretization technique can be
developed.

The major progress made in this work is to propose a condition for
𝑉 , with which the interpolation procedure in the time derivation can
be completely eliminated. We propose a condition of

𝑉 (𝑡𝑖) = 𝑘(𝑡𝑖)𝛥𝐸, (10)

where 𝑘(𝑡𝑖) is an integer function and 𝛥𝐸 is a constant energy spacing.
Moreover, 𝑘(𝑡 ) is unambiguously determined to minimize the absolute
𝑖
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Fig. 3. Distribution function at equilibrium calculated with (a) the conventional H-
transformation or (b) the approximate H-transformation. The total length is 120 nm. At
a given position variable, each distribution function decays exponentially as the energy
variable increases. The additional term out of the free-streaming operator plays an
important role in the approximate H-transformation. The energy variable is normalized
with the energy spacing of 10 meV.

value of 𝑉 − 𝑉 . With the above condition, we readily have

𝑉 (𝑡𝑖) − 𝑉 (𝑡𝑖−𝑗 ) = [𝑘(𝑡𝑖) − 𝑘(𝑡𝑖−𝑗 )]𝛥𝐸. (11)

Again, the time derivation requires 𝑓 (ℎ − 𝑉 (𝑡𝑖), 𝑡𝑖−𝑗 ). Since the energy
shift is just an integer-multiple of 𝛥𝐸, the required distribution function
can be readily accessible without any interpolation procedure. There-
fore, with the approximate H-transformation, the transient simulation
becomes possible while enjoying the superior numerical properties of
the conventional H-transformation.

3. Numerical results

The proposed method has been implemented into our in-house
deterministic Boltzmann transport equation solver. The physical mod-
els are the same with those in [11]. Three different stabilization
3

Fig. 4. Color map of the distribution function calculated with (a) the maximum
entropy dissipation scheme or (b) the approximated H-transformation. The total length
is 120 nm and the applied anode voltage is 0.5 V. Negative distribution functions are
clearly observed in (a). Of course, an integral of the distribution function along the
energy axis is positive and areas with negative distribution functions can be reduced
by adopting a finer grid. On the other hand, in the case of the proposed method, the
distribution function is non-negative everywhere, even with the same grid. The energy
variable is normalized with the energy spacing of 10 meV.

schemes (the maximum entropy dissipation scheme, the conventional
H-transformation, and the approximate H-transformation) are avail-
able.

Fig. 1 shows the structure under simulation. Starting from a 1200-
nm-long 𝑁+𝑁𝑁+ resistor, a scaled structure can be generated by
increasing a scaling factor, 𝛼. As shown in Fig. 2, the DC IV char-
acteristics of all simulated structures show excellent agreement be-
tween two methods (the conventional H-transformation and the ap-
proximate H-transformation). It is much expected because the ap-
proximate H-transformation is a modified version of the conventional
H-transformation.

The distribution function at equilibrium is drawn in Fig. 3. Two
stabilization schemes (the conventional H-transformation and the ap-
proximate H-transformation) are compared. As expected, the conven-
tional H-transformation follows the Boltzmann distribution, which is
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not dependent on the position variable. On the other hand, with the
approximate H-transformation, the distribution function varies over the
position variable, because the energy variable slightly differs from the
total energy.

When a high DC voltage is applied to the anode terminal, the
stabilization scheme based on the kinetic energy suffers from negative
distribution functions. In Fig. 4, the color map of the distribution
is shown. Empty areas at high energies represent discretized points
with negative distribution functions. Of course, an integral of the
distribution function along the energy axis is positive and areas with
negative distribution functions can be reduced by adopting a finer grid.
For the same case, as shown in Fig. 4(b), the distribution function
calculated with the approximate H-transformation is non-negative ev-
erywhere. Again, it is the property inherited from the conventional
H-transformation.

The simulation results have been calculated with the energy spacing
of 10 meV. The energy spacing is chosen not to exceed the minimum
phonon energy (12.1 meV). For such a relatively large energy spacing,
the simulation can be performed without any problem. It is because the
effective force term is always kept small in the proposed stabilization
scheme. Of course, in order to avoid the artificial diffusion [9,10], a
small energy spacing is desirable.

4. Outlook

The approximate H-transformation employs a special 𝑉 . 𝑉 is close
to the band minimum energy and proportional to an integer-multiple
of the discrete energy spacing. The approximate H-transformation is a
suitable method for transient simulations because it is not affected by
the time-varying potential energy. This method may be applied to the
two-dimensional/one-dimensional electron gas (multi-subband Boltz-
mann transport equation) as well as the three-dimensional electron gas.
However, when the potential energy is time-varying, the wavefunction
of each subband may change. It seems that such an effect cannot be
captured in the present scheme. Addressing this issue would be an
interesting topic for future exploration.

5. Conclusion

In conclusion, a novel stabilization scheme has been successfully im-
plemented into the deterministic Boltzmann transport equation solver.
For the three-dimensional electron gas, the distribution functions at
past time instances can be directly accessible without any interpolation
4

procedure and the stability of the conventional H-transformation can be
shared. The proposed method can be readily applied to the transient
simulation.
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