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In this work, we propose a method to get an initial guess for the semiconductor device simulation with a
compact charge model. By using the obtained initial guess, we can perform the device simulation directly at
the target bias condition without a time-consuming bias ramping process. In order to verify our method,
rectangular Gate-All-Around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs) having a

long channel length are considered. Results clearly show that the device simulation can be accelerated through

our method.

1. Introduction

In the semiconductor device simulation, the target bias condition
has to be reached through the bias ramping process, which is typi-
cally time consuming. Furthermore, in order to obtain a solution of
coupled nonlinear equations, the Newton—-Raphson method is typically
used and the converged solution is obtained through several New-
ton iterations. Since Newton iterations appear repeatedly during the
bias ramping process, the overall computational time is significantly
increased. Therefore, when a good initial guess for the target bias
condition is available, the computational time can be significantly
reduced.

Recently, in the semiconductor device simulation, many studies
using a neural network model have been reported in order to describe
the input—output relation or accelerate the simulation [1-6]. We have
proposed a method to generate the initial guess through a trained deep
neural network [7-10]. The proposed method in [7-10] generates the
initial electrostatic potential depending on the device parameters. The
efficiency of the proposed method has been demonstrated with several
numerical examples.

In this study, instead of a deep neural network which must be
trained before the inference, we use a compact charge model to predict
an initial guess. The compact charge model for a two-dimensional (2D)
metal-oxide-semiconductor (MOS) structure is numerically solved with
the one-dimensional (1D) continuity equation. The solution of two
coupled equations is used to generate the initial electrostatic potential
and the initial electron density, which become the initial solutions

of the drift-diffusion model. In order to verify our proposed method,
rectangular gate-all-around (GAA) metal-oxide-semiconductor field-
effect transistors (MOSFETs) with a long channel length shown in Fig. 1
are simulated.

2. Results for 2D rectangular MOS structures

In our previous study [11], we have proposed a compact charge
model for a 2D MOS structure with an arbitrary cross-section. In this
work, we use the model in [11] to predict an initial guess. It is
expressed as [11]:
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where V; is the gate voltage, @,,¢ is the work function difference
between the gate metal and intrinsic reference semiconductor, Q, is
the integrated electron charge, Q, is the integrated doping charge, A*
is the area of the cross-section of the semiconductor region, P is the
perimeter of the A* surface, e is the permittivity of the semiconductor,
Vr is the thermal voltage, V is the electron quasi-Fermi potential, , is
a normalized distance between the electron centroid and the interface,
and g is a correction factor to consider an effect of a cross-section. Here,
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Fig. 1. (a) Cross-section of a rectangular GAA MOSFET and (b) its three-dimensional (3D) structure. The aspect ratio used in this work means a ratio of H to W. Thickness
of the insulator is 1.5 nm. The channel length is 1 pm and the source/drain region is 0.1 pm-long. The p-type doping concentration of the channel region is 10'® cm™ and the

source/drain n-type doping is 10* em=3 in this work.
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Fig. 2. Difference between the initial guess and the converged solution. Three aspect ratios (H:W = 1:1, 1:2, and 1:3) and three gate voltages (V; = 0.3, 0.7, and 1.1 V) are
considered. Only a quarter of the cross-section is shown. In these examples, the maximum difference is about 77 mV.

(¢), and (C,,,), represent the average of the surface potential and the
effective insulator capacitance per unit area, respectively. Furthermore,
in [11], a generalized coordinate, vy, is introduced, and it will be used
for predicting the initial guess.

Before applying our method to the 3D MOSFETs, the compact
charge model is tested in the 2D cross-sections. A procedure to predict
the initial electrostatic potential for 2D rectangular GAA MOS struc-
tures is as follows. First, for a given cross-section, the linear Poisson
equation is numerically solved considering only the doping charge

density at a low V;. From the numerical solution, y is calculated and
parameters for calculating the compact charge model are extracted.
The details of this procedure are described in [11]. Also, the Laplace
equation is numerically solved in only the insulator region. The result
of the Laplace equation is used to predict the initial potential profile
of the insulator region. Then, (1) and (2) are solved at the target gate
voltage and Q,, (¢),, and (¢)y can be obtained at the target gate bias.
Here, (¢)y is an average of the electrostatic potential (¢) over the
cross-section with V2y as a weighting factor [11]. Next, by using (¢),
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Cross-section of MOS structure
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Solve the Poisson equation considering only the doping density
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Calculate ¥ and extract parameters for the compact charge model

¥

Solve the Laplace equation in only the insulator region

¥

Calculate Q, at the target V; using the compact charge model

¥

together at the target V; and Vv,

Solve the compact charge model and 1D continuity equation

¥

Generate initial guesses from Q, and V along the channel direction

¥

Solve the drift-diffusion model without bias ramping process
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Fig. 3. Flow chart of the overall procedure proposed in this work.
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Fig. 4. Initial guesses of Q, and V along the z-direction compared with final converged results at several bias conditions. The difference of V' between initial guess and final
result is also shown. Through the method proposed in this work, at most 6 Newton iterations are needed for solving the drift-diffusion model.
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Fig. 5. Absolute maximum potential update versus Newton iteration during calculation
of the drift-diffusion model with proposed initial guesses. Our method shows good
convergence behavior without any bias ramping process.

and (¢) yx, we predict the initial potential, ¢;,;,;,;, for the semiconductor
region at the target bias condition as follows:

Ginitiar = max ({¢,), (W =)+ (D)5 . (D)x) - 3

where ¥ is the value of y at the semiconductor-insulator interface
and (¢,) =-(Q,+Q,) /eP. Here, max is a function that returns the
largest value in given arguments. Through this procedure, ¢, can
be obtained.

Fig. 2 shows differences between ¢,,,;,, and the final converged
potential. Three different aspect ratios are considered. The maximum
difference between the initial potential and the converged one is about
77 mV. By using ¢;,;i.;» at most 7 Newton iterations are needed at the
target bias condition without any bias ramping for solving the Poisson
equation of MOS structures in Fig. 2.

3. Results for 3D rectangular GAA MOSFETs

The procedure for 2D MOS structures is extended to 3D MOSFETs. In
order to obtain the initial guess for the drift-diffusion model, we solve
the 1D electron continuity equation with (1) and (2). The 1D electron
continuity equation is expressed as follows:

L (w02 ) =0, @
dz

where u is the electron mobility and z is a coordinate along the channel
direction. In this preliminary work, a constant mobility is assumed. Be-
fore solving the compact charge model and the 1D continuity equation
together, y is calculated and parameters for calculating the compact
charge model should be extracted as with 2D case. And then, (1) and
(2) are solved in order to obtain Q, at the target gate voltage. With
these values, by solving (1), (2), and (4) together at the target bias
point, we can get O, and V along the channel direction. In this work,
Q, of the source/drain n-type region is assumed to be solely determined
by the doping concentration. By using the calculated O, and V, the
initial potential profiles can be predicted from (3). Also, from the initial
potential, the initial guess for the electron density can be obtained.
These initial guesses are used to calculate the drift-diffusion model
at the target voltage without the bias ramping process. The overall
procedure predicting the initial guess is shown in Fig. 3.

In Fig. 4, results for rectangular GAA MOSFETs are shown. In this
study, as shown in Fig. 1, the channel length is 1 pm and the channel
p-type doping concentration is 10'© cm~3. And the source/drain region
is 0.1-ym-long and its n-type doping concentration is 102 cm=3. The
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aspect ratio of the cross-section used in Fig. 4 is 1:3 (H = 6 nm
and W = 18 nm). Fig. 4 shows the initial O, and V along the z-
direction compared with the final converged results at several bias
conditions. Differences of V' between initial guesses and final results
are also shown and the number of Newton iterations needed for solving
the drift-diffusion model at the target bias condition without any
ramping process is found for each case. In these examples, at most
6 Newton iterations are needed to obtain the self-consistent solution.
It is much more efficient than the conventional bias ramping method.
Furthermore, the convergence behavior of results of Fig. 4 is shown in
Fig. 5.

4. Conclusion

In conclusion, we have presented a method to predict an initial
guess of the drift-diffusion model at a target bias condition. First, our
method demonstrates that an initial potential profile for a 2D MOS
structure at a target gate voltage can be generated through our previous
compact charge model. For a 3D MOSFET, by using the compact charge
model and the 1D electron continuity equation, the initial guess for the
semiconductor device simulation is obtained appropriately. With the
obtained initial guess, the device simulation is performed directly at the
target bias point without any bias ramping. By adopting the proposed
method, the number of Newton iterations to get the converged solution
can be significantly reduced.
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