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A B S T R A C T   

Prediction of semiconductor Critical Dimensions (CDs) from ellipsometry requires the machine learning model. 
However, proper training of a machine learning model is challenging because the measurement process of typical 
experimental CD data, which is mostly carried out with transmission electron microscopy (TEM), is a time- and 
cost-consuming process. To obtain a robust machine learning model with few experimental data, we propose a 
physics-guided neural network (PGNN) architecture. PGNN extracts spectrum-CD physics from simulation data 
and constructs physics-guided loss function for guiding the model optimization. The proposed algorithm has 
superior performance compared with other baseline algorithms and can be properly trained only with small 
experimental CD data, including label noise.   

1. Introduction 

As the semiconductor structure becomes complex and the length 
scale shrinks, the accurate estimation of ellipsometric measurement- 
semiconductor CD relationships with machine learning is crucial [1]. 
However, in an industrial field, the experimental data is minimal and 
include noise because measurement of the CD, which requires electron 
microscopy such as TEM [2], is a time- and cost-consuming process, 
while the spectrum can be relatively easily measured from optical 
metrology such as ellipsometry [3,4]. In this paper, we propose an end- 
to-end two-step PGNN algorithm [5], which uses a simulation-based 
model to train experimental data. In the first step, with the simulation 
data, we train the neural network, which can represent the physics 
function describing a general spectrum-CD relationship. In the second 
step, we train the experimental model whose loss function is guided by 
physics obtained from the first step. The proposed algorithms can avoid 
overfitting induced by small-sample and provide higher prediction ac
curacy than other benchmark algorithms. 

2. Methods 

We prepare six in-line semiconductor datasets of DRAM, which are 
composed of ellipsometry spectrum (x)-TEM CD (y) measurements 
(Table 1). Each dataset corresponds to a different CD from the sequential 
fabrication process. Train and test datasets are collected from different 
lots with different process conditions. We first use technical computer- 
aided design (TCAD) [6] with physical models and parameters such as 
etch rate to fit the simulation structure with TEM measurements. In the 
second step, the spectra are calibrated with ellipsometry measurement 
by controlling material properties. The spectra are calculated with 
rigorous coupled wave analysis (RCWA) [7]. After both structure and 
spectra are calibrated, we build the simulation data by changing phys
ical parameters, which spends a day for the whole calculation. Most 
datasets include only 9–15 experimental points, which are not sufficient 
to train a trivial machine-learning model. 

Fig. 1 shows the schematic of the proposed PGNN model. The model 
is composed of two sub-models, f( • ) and g( • ), which train the simu
lation and experimental data, respectively. The two sub-model struc
tures are the same and composed of 1D convolutional layers, flattened 
layers, and fully-connected layers. The 1D convolutional layers are used 
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to obtain the spectrum representation, and the fully-connected layers act 
as a classifier. L2 regularization and dropout are used to regularize the 
model training. 

f( • ) is trained with the simulation data and represents the general 
spectrum-CD relationship. The trained model f( • ) affects the training 
procedure of g( • ) with experimental data in two ways. First, the 
weights of the f( • ) 1D convolutional layers are transferred to the model 
g( • ) and are frozen during further training. Second, f( • ) provides a 
guideline to g( • ) as a form of the loss function, which is defined [5] as 
follows 

Lg(•) = LMSE + LPHYS = MSE
(
ypred, y

)
+

∑

f (xi)<f(xj)

ReLU
(
g(xi) − g

(
xj
) )

where MSE( • ) denotes mean squared error and ReLU( • ) denotes 
rectified linear unit function. The LMSE represents typical empirical loss, 
while the LPHYS represents regularization loss guided by physics from the 
f( • ). LPHYS directly guides to regularize g( • ) to follow the spectrum-CD 
relationship defined from f( • ). Note that we do not use any explicit 
physical equation in LPHYS. Instead, we consider f( • ) as the physical 
model of spectrum-CD relations because simulation data is already 
defined to follow Maxwell’s equation. Also note that the additional 
training time from LPHYS is about 20 % of training time only with, LMSE 

which is acceptable for practical use. 
For comparison, we compare our model against three baseline al

gorithms for regression: partial least squares (PLS), ridge (Ridge), and 
neural network (NN). PLS and Ridge are the linear regression models 
with regularizers and only train g( • ) with experimental data. The NN 
model trains both f( • ) and g( • ), which use only empirical loss LMSE and 
weight transfer of 1D convolution layers for training g( • ). 

3. Results 

Table 2 lists the root mean square error (RMSE) of each algorithm on 
the train and the test data. Boldface represents the best-performed al
gorithm. The PGNN outperforms for predicting test data except for 
DATA2, which still shows a similar RMSE to Ridge. Note that PLS, Ridge, 
and NN perform better on train datasets, which indicates they are not 
generalized for unseen spectrum data and suffered from overfitting. 
Even though NN uses a similar architecture to PGNN, it does not 
consider LPHYS and performance is comparable with that of PLS and 
Ridge. It denotes that the physics-guiding mechanism of PGNN is crucial 
for overcoming few-data problems and increasing the prediction accu
racy of unseen spectrum data. The average test set RMSE of PGNN is 
2.22 nm, which is improved by 51 % relative to the average RMSE of 
other baseline algorithms. Fig. 2 shows the scatter plots of PGNN and 
Ridge prediction results, where the X and Y axes indicate the predicted 
and true CDs, respectively. As shown in Fig. 2, PGNN shows significant 
improvements, especially in the test data prediction accuracies. Com
parison with other baseline algorithms (PLS, NN) shows similar results. 
In the same wafer, spectrum-CD relationships can be approximated 
linear and the Ridge can well fit train data, but if the test spectrum of 
another lot, where the process condition is significantly changed, is 
entered, its locality easily breaks and the test prediction fails. It is well 
shown in the DATA6 result, where the test data prediction shows a 
constant offset from the train data prediction. Because the PGNN uses 
physics covering a broad range of parameters provided by the simula
tion data, it shows an accurate prediction of the test dataset and robust 
process condition variation. 

Fig. 2 True and predicted spectrum – CD relationships of DATA6. 
Spectrums are decomposed by PCA algorithms and CDs are represented 
by colors. Note that increasing CD directions of Ridge and PGNN pre
diction are different. Only PGNN can correctly predict the true CD dis
tribution component analysis (PCA) and CDs are represented by color 
maps. Fig. 3 shows that the Ridge correctly predicts only around the 
experimental data points. The physics of the spectrum-CD relationship 
can be simply denoted as the direction of increasing CD in the PCA map. 
The increasing CD direction from Ridge prediction is different to true 
value. It indicates that even though the Ridge can predict simulation 
data, this model violates the general physics function provided from 
simulation. However, PGNN algorithm can reproduce spectrum-CD re
lationships of simulation data correctly. It indicates that PGNN can make 
more physics-reliable model and is more robust to the unseen spectrum 
data if it is located in the broad range covered by simulation data. 

To test the model robustness against various field conditions, we vary 
the data quality and estimate the change of RMSE in given algorithms. 

Table 1 
Details of prepared six benchmark datasets. The blue color denotes the number 
of data points. Train and test datasets are prepared using TEM. The simulation 
dataset is obtained via the RCWA of the TCAD structure.   

DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 

# of Train 12 12 293 15 9 9 
Avg. (nm) 213.89 257.23 28.77 130.39 29.12 84.01 
Std. (nm) 11.07 13.7 3.11 10.19 2.33 7.9 
# of Test 18 18 123 6 10 14 
Avg. (nm) 222.32 254.76 26.83 130.59 33.42 79.29 
Std. (nm) 9.56 10.9 2.16 7.17 1.38 4.47 
# of 

Simulation 
1906 1906 1988 1988 1988 1988  

Fig. 1. A schematic of proposed PGNN architecture.  

Table 2 
RMSE performance comparison of each algorithm on the train and test datasets. Boldface represents the best RMSE of the given dataset.   

Train Set RMSE (nm) Test Set RMSE (nm)  

PLS Ridge NN PGNN PLS Ridge NN PGNN 

DATA1  0.583  0.591  0.654  2.183  5.911  9.105  6.610  3.073 
DATA2  1.13  0.369  1.085  2.585  3.442  3.141  3.162  3.155 
DATA3  0.987  0.983  0.982  1.155  3.329  3.340  3.500  1.847 
DATA4  1.03  1.031  1.029  1.39  3.099  3.095  2.954  2.461 
DATA5  0.478  0.501  0.487  0.269  4.245  2.384  4.302  1.647 
DATA6  0.407  0.407  0.408  0.335  6.241  6.292  6.325  1.138 
DATA7  0.727  0.722  0.752  0.437  5.251  5.224  5.397  3.206  
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First, we add the noise to the experimental CD values because the 
interpretation of TEM results is guided by human observation, which 
can exert bias on the estimation. We assume that the noise is random and 
controlled by the Label Noise × N

(
0,12), where Label Noise is defined to 

be the percentage ratio of CD average of the given dataset and N
(
0, 12) is 

the standard normal distribution. Fig. 4 shows the RMSEs of all algo
rithms as a function of the Label Noise level. Because the noise is chosen 
randomly, we carry out training 20 times for the given label noise and 
algorithms and average them to minimize variation in RMSE. Only 
proposed PGNN maintains relatively good performance regardless of 
varying data quality. 

Second, we reduce the number of train experimental data to 70 % 
and estimate the change in performance. We average 50 training results 
for randomly chosen training data for a single result. Fig. 5 shows the 
PGNN show superior performance when the training data is reduced. 
Note that DATA1, DATA2, DATA5, and DATA6 have only 9–12 train 
data points. If we reduce 70 % of them, we use only 3 data points, which 

requires only one wafer. The red-shaded regions of Fig. 5 show that the 
PGNN still can train a competitive prediction model with only one 
wafer, which can significantly reduce time- and cost-consumption dur
ing the metrology process in the semiconductor industry. 

4. Conclusion 

In this letter, we propose the PGNN algorithm, which uses the 
spectrum-CD relationship extracted from a simulation-based model to 
train a recipe with few experimental data. The proposed algorithms can 
avoid overfitting induced by small-sample and provide higher prediction 
accuracy than other benchmark algorithms. PGNN works properly even 
with three experimental data points from only one wafer, which can 
reduce the cost of data preparation drastically. The proposed algorithm 
is currently being used for the analysis of ellipsometry data of the 
DRAM, Logic, and Flash products. Furthermore, the algorithm archi
tecture of PGNN can be applied to other metrology subjects where the 
simulation data is prepared. 
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Fig. 2. Prediction results of Ridge and PGNN on the train (yellow dot) and test 
(blue) datasets. The X and Y axes represent the predicted and true CD values, 
respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 3. Visualizes true and predicted spectrum-CD relationships of DATA6 with 
Ridge and PGNN. The dimension of spectrum features is reduced by principal. 

Fig. 4. The RMSE of algorithms as a function of the Gaussian label noise scale 
which is added to the train data. 
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