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A B S T R A C T

We present an implementation study of gate-type quantum computing algorithms for the purpose of semi-
conductor device simulations. As one of the representative quantum algorithms we consider the use of
HHL (Harrow–Hassidim–Lloyd) algorithm to solve the Poisson equation in semiconductor nanowire p–n
junction under the Neumann boundary condition that the electric field is zero at the electrode boundaries.
Our proposed model of the quantum gate to implement the Neumann boundary condition along with the
appropriately designed non-uniform mesh grid has been found to successfully reproduce the solution obtained
by conventional method.
1. Introduction

Recent progress of quantum computing technology, especially the
dramatic progress of the quantum computing environment via the
cloud such as in IBM Q, have been stimulating various studies on
the application of intermediate-scale quantum computers, so-called
NISQ (Noisy Intermediate-Scale Quantum) devices. Such research on
the specific application examples of quantum computers ranges from
material science simulations [1–3] to social science simulations such as
finance. In any of these cases, it is important to consider how quantum
computers can be used in solving equations that have been required in
individual fields.

In semiconductor device simulation as well, similarly to the recent
development of machine learning algorithms for device simulations [4,
5], it is important to consider the possibility of utilizing quantum
computing algorithms in the long term in the future. One of such
examples is the use of HHL (Harrow–Hassidim–Lloyd) algorithm [6],
which is one of the applications of the quantum phase estimation
algorithm, in the calculation of the potential distribution based on
Poisson equation [7–10]. However, the accurate estimation of the
solutions requires large number of register qubits in general [10].
Therefore it is important to consider how we can accurately calculate
the Poisson’s equation with fewer qubits. With such motivation we
study how the HHL algorithm can be applied to solve the Poisson’s
equation for semiconductor nanowire structure by limited number of
qubits, especially under the Neumann boundary condition that the
electric field is zero at the electrode boundaries.

✩ The review of this paper was arranged by Francisco Gamiz.
∗ Corresponding author.
E-mail address: ssouma@harbor.kobe-u.ac.jp (S. Souma).

2. Proposed method and results

In this study we assume the semiconductor nanowire p–n junction
system shown in Fig. 1, where the left and the right regions are doped
into p and n type, respectively. Assuming that the electrostatic potential
and the charge density is constant within the cross-sectional area 𝑆 and
thus depend only on the longitudinal position 𝑥, the Poisson equation
is written as 𝜀𝑑2𝜑 (𝑥)∕𝑑𝑥2 = −𝜌 (𝑥), where 𝜀 is the dielectric constant,
𝜑 (𝑥) is the electrostatic potential, and 𝜌 (𝑥) is the charge density. By
introducing the finite difference approximation, the discretized Poisson
equation is derived as −𝐶𝜑𝑖+1 + 2𝐶𝜑𝑖 − 𝐶𝜑𝑖−1 = 𝑄𝑖, where 𝑖 stands for
the position grid along the 𝑥 direction, 𝐶 ≡ 𝜀𝑆∕𝑎 is the capacitance
with 𝑎 being the grid spacing, and 𝑄𝑖 ≡ 𝜌

(

𝑥𝑖
)

𝑆𝑎 is the charge at the
𝑖th grid.

(i) Four sites model: In order to explore the possibility to apply the
HHL algorithm for the device simulation purpose, we first consider the
simplest situation, where the central device region is described by four
grid points spanned by 𝑖 = 1 ∼ 4, and semi-infinite leads are attached
at both ends of the central region. By imposing the Neumann boundary
condition that the electric field is zero at both ends of the central device
region, so that 𝜑1 = 𝜑0 and 𝜑5 = 𝜑4, we obtain the matrix equation
𝐴 |𝜑⟩ = |𝑄⟩, where the potential vector |𝜑⟩ and the charge vector |𝑄⟩

are expressed by quantum bits (qubits). The capacitance matrix 𝐴 is
given below and is expressed by quantum gates in the HHL algorithm
shown in Fig. 2 as we will explain next.

In the HHL algorithm shown in Fig. 2 the unitary operation (𝑈) is
defined by the time evolution due to the Hamiltonian matrix 𝐴, so that
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Fig. 1. Schematic illustration of the semiconductor nanowire p–n junction system,
where the left and the right regions are doped into n and p types, respectively. Finite
differentiated grids are also illustrated.

Fig. 2. Quantum gate circuit of HHL algorithm to solve matrix Poisson equation 𝐴 |𝜑⟩ =
|𝑄⟩, where 𝐴 is capacitance matrix and is encoded in the unitary operation 𝑈 . The
quantum circuit is composed of Hadamard gate (𝐻) quantum Fourier transformation
(FT), rotation (𝑅), and unitary operation (𝑈). If the ancilla (top most) qubit is measured
to be |1⟩, the solution |𝜑⟩ of the linear equation is encoded in the bottom set of the
qubits.

𝑈 = 𝑒𝑖𝐴𝑡. In order to implement this unitary evolution by quantum gate
circuit, it is necessary to decompose the matrix 𝐴 as follows.

𝐴 =
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= 𝐴0 + 𝐴1 + 𝐴2, (1)

where 𝜀1 = 1, 𝜀1 = 2, and 𝛾 = −1 in units of 𝐶. Here we note that 𝐴0 and
𝐴1 are operators within a single qubit, while 𝐴2 is essentially the op-
erator connecting two qubits (inter qubit operator). The corresponding
unitary evolution operator is then calculated by applying the Trotter
expansion as 𝑈 = 𝑒𝑖𝐴𝑡 = 𝑒𝑖(𝐴0+𝐴1+𝐴2)𝑡 ≃

(

𝑒𝑖𝐴0𝑡∕𝑛𝑒𝑖𝐴1𝑡∕𝑛𝑒𝑖𝐴2𝑡∕𝑛
)𝑛, where

larger value of 𝑛 gives more accurate results. This unitary evolution
operator can be implemented by the quantum gate circuit in Fig. 3.
Here we note that since the matrix 𝐴0 is not the multiplication of the
identity matrix due to the Neumann boundary condition, we propose
to use the quantum gate model depicted in the 𝑒𝑖𝐴0𝑡∕𝑛 part in Fig. 3. As
for the quantum gate circuits for the quantum Fourier transformation
(𝐹𝑇 in Fig. 2) and the controlled rotation (𝑅 in Fig. 2) we employ the
standard gate configurations [7].

Here it should be noted that the 𝑖th eigenvalue 𝜆𝑖 of the matrix
𝐴 are 0, 2 −

√

2, 2, and 2 +
√

2, respectively, where the difference
between adjacent eigenvalues 𝛥𝜆 ≡ 𝜆𝑖+1 − 𝜆𝑖 is

√

2 except for the
lowest one (we note that 𝜆0 = 0 is not required to obtain the solution
|𝜑⟩). We can then take the advantage of this fact if the diagonal
elements of the matrix 𝐴 are equally shifted by the constant 𝜆shif t ≡
𝜆1 − 𝛥𝜆 = 2 − 2

√

2, because then the 2nd, 3rd, and 4th eigenvalues
𝜆′𝑖 = 𝜆𝑖−𝜆shif t are given by 𝜆′𝑖 = 𝑖𝛥𝜆 =

√

2𝑖 and are exactly described by
two-digit decimal binary numbers 0.01, 0.10, and 0.11, respectively,
where 0.01 corresponds to the decimal expression 0.25 and is scaled
to 𝜆′ = 𝑖𝛥𝜆 by the factor 𝛥𝜆∕0.25. The pre-subtracted value 𝜆
2

𝑖 shif t
Fig. 3. Detail of the quantum circuit corresponding to the controlled unitary 𝑈 part
in Fig. 1. 𝑃 abd 𝑅𝑥 are the phase and 𝑥 rotation gates, respectively.

Fig. 4. Comparison of electrostatic potentials obtained by HHL and classical (exact
solution in this case) methods. Here we assume that the charges of +0.26𝑒 and −0.26𝑒
at the 2nd and the 3rd sites, respectively. Our parameter values correspond to the case
that the charge density is 𝜌 = 1026𝑒 m−3, grid spacing is 𝑎 = 2.6 nm, cross-sectional
area is 𝑆 = 1 nm2, and the material is Si. The value of 𝑛 in Trotter expansion has been
chosen as 16, and the time constant is 𝑡 = 2𝜋 × 0.25∕

√

2.

can be re-incorporated at the controlled rotation part 𝑅 to obtain the
correct solution |𝜑⟩. We implemented the above scheme using the
quantum programming language Qiskit, and obtained the solution |𝜑⟩
very close to that obtained by the conventional method as shown in
Fig. 4 (see caption for detailed parameters). We note that since all of
four eigenvalues in this case are exactly described by two-digit decimal
binary numbers as mentioned above in principle, the number of register
qubits required is also sufficient with two.

(ii) Eight sites model: We next consider the 8 sites case, where
the central device region is described by eight grid points spanned by
𝑖 = 1 ∼ 8, and semi-infinite leads with zero net charge are attached at
both ends of the central region. If we simply extend the 4 sites model
to the eight site model, however, the eigenvalues of the 8 × 8 matrix 𝐴
in the linear equation 𝐴 |𝜑⟩ = |𝑄⟩ are not equally separated unlike the
4 sites case, and we cannot take the above mentioned advantage in this
case. Therefore, we consider to introduce the non-uniform mesh grids in
the stage of finite-difference approximation of Poisson’s equation, and
we adjust the grid spacing so that the adjacent eigenvalues of the 8 × 8
matrix 𝐴 are as equally separated as possible. In the top panel of Fig. 5
we show the schematic illustration of the non-uniform 8-sites model,
where the grid spacings (adjusted so that the adjacent eigenvalues



Solid State Electronics 200 (2023) 108547S. Matsuo and S. Souma
Fig. 5. (Top) Schematic illustration of the non-uniform 8-sites model, where the grid
spacings are adjusted so that the adjacent eigenvalues of the 8 × 8 matrix 𝐴 are as
equally separated as possible. (Bottom) The calculated eigenvalues of the 8 × 8 matrix
𝐴 based on the non-uniform 8-sites model. We can see that the lowest 6 eigenvalues
are equally separated.

are as equally separated as possible) are listed. In the bottom panel
of this figure the calculated eigenvalues of the 8 × 8 matrix 𝐴 are
shown, where we can see that the lower 5 eigenvalues (apart from the
lowest one equal to zero) are equally separated by 𝛥𝜆 = 0.56. Then
the equal shift of the diagonal elements of 𝐴 by 𝜆shif t ≡ 𝜆1 − 𝛥𝜆 gives
𝜆′𝑖 = 𝜆𝑖 − 𝜆shif t = 𝑖𝛥𝜆 up to 𝑖 = 5.

In the same way as in the 4-sites model, the unitary operation
𝑈 = 𝑒𝑖𝐴𝑡 is calculated as 𝑈 ≡ 𝑒𝑖𝐴𝑡 = 𝑒𝑖(𝐴0+𝐴1+𝐴2+𝐴3)𝑡 ≃

(

𝑒𝑖𝐴0𝑡∕𝑛𝑒𝑖𝐴1𝑡∕𝑛

𝑒𝑖𝐴2𝑡∕𝑛𝑒𝑖𝐴3𝑡∕𝑛
)𝑛, with 𝑛 being the Trotter number. In Fig. 6 we show the

actual expressions for the matrices 𝐴𝑖 (𝑖 = 0, 1, 2, 3) and the quantum
gate circuits corresponding to 𝑒𝑖𝐴𝑖𝑡 (𝑖 = 0, 1, 2, 3), where 𝜀𝑖=1 = −𝛾1
and 𝜀𝑖=2,3,4 = −

(

𝛾𝑖−1 + 𝛾𝑖
)

with 𝛾𝑖 = −𝐶0(𝑎𝑖∕𝑎0) and 𝐶0 ≡ 𝜀𝑆∕𝑎0.
We next consider the input charge vector |𝑄⟩. In order to discuss

how the spatial localization of the charge distribution (under the con-
dition of anti-symmetricity for simplicity) influence the accuracy of the
results obtained by the HHL algorithm for 8 sites model, we assume that
the input charge vector |𝑄⟩ is given by the following parametrized form

|𝑄⟩ =
[

cos 𝜃 cos (𝜃 + 𝛿) |000⟩ + cos 𝜃 sin (𝜃 + 𝛿) |001⟩

+ sin 𝜃 cos (𝜃 + 𝛿) |010⟩ + sin 𝜃 sin (𝜃 + 𝛿) |011⟩

− sin 𝜃 sin (𝜃 + 𝛿) |100⟩ − sin 𝜃 cos (𝜃 + 𝛿) |101⟩

− cos 𝜃 sin (𝜃 + 𝛿) |110⟩ − cos 𝜃 cos (𝜃 + 𝛿) |111⟩
]

∕
√

2, (2)

where the phases 𝜃 and 𝛿 are adjustable parameters related to the
spatial localization of the charge distribution. The phase 𝜃 (scaled as
𝜃 = 𝜋∕𝑥𝜃 below) determines the overall charge localization [e.g., 𝑥𝜃 =
2 (𝜃 = 𝜋∕2) gives most localized charges near the interface of pn
3

Table 1
The coefficient 𝛽𝑖 (𝑖 = 1, 3, 5, 7) for three different values of 𝑥𝜃 . We note that 𝛽𝑖 = 0
for 𝑖 = 0, 2, 4, 6 due to the antisymmetric charge distributions.

𝛽1 𝛽3 𝛽5 𝛽7
𝑥𝜃 = 3 −0.814 0.465 −0.348 −0.017
𝑥𝜃 = 2.5 −0.618 0.590 −0.518 0.044
𝑥𝜃 = 2 −0.270 0.562 −0.777 0.087

junction], while the phase 𝛿 (fixed as −0.05𝜋 in this study) is introduced
to realize monotonically varying charge profile over sites within each
of n and p regions. The input charge vector |𝑄⟩ in Eq. (2) can be
constructed by the quantum gate circuit shown in Fig. 7, which is
placed at the left most part of the bottom set of qubits in Fig. 2.

In Fig. 8(a) and (b) we show the input charge vector |𝑄⟩ given
by Eq. (2) for various values of 𝑥𝜃 , and the corresponding solutions
|𝜑⟩, respectively. In (b) the results obtained by the quantum algorithm
and the classical (conventional) algorithm are compared. As seen in
Fig. 8(b), we obtained good agreement between the quantum and
classical solutions except for the most localized charge distribution
realized by 𝑥𝜃 = 2. The reason behind the larger error for more localized
case can be understood by analyzing the coefficient 𝛽𝑖 in the expansion
|𝑄⟩ =

∑𝑁−1
𝑖=0 𝛽𝑖 ||𝑎𝑖⟩, where |

|

𝑎𝑖⟩ is the 𝑖th eigenvector of 𝐴 and 𝑁 = 2𝑛

with 𝑛 = 3 in the 8-sites model. As shown in the Table 1, we have
larger value of 𝛽7 for more localized |𝑄⟩, meaning that in the solution
|𝜑⟩ = 𝐴−1

|𝑄⟩ =
∑𝑁−1

𝑖=1
(

𝛽𝑖∕𝜆𝑖
)

|

|

𝑎𝑖⟩ the highest order 𝑖 = 7th term
contributes non-negligibly to |𝜑⟩. Here we recall that the eigenvalue
𝜆𝑖 in the denominator can be estimated accurately only for 𝜆𝑖≤5 by the
quantum circuit with three register qubits, where the equal separations
of adjacent eigenvalues play the essential role. Therefore the non-
negligible value of 𝛽7 and the estimation error of 𝜆7 is the origin of
the error in the quantum solution of |𝜑⟩. For less localized |𝑄⟩, on the
other hand, the value of 𝛽7 is negligibly small (e.g., for 𝑥𝜃 = 3) and
thus the estimation error of 𝜆7 (independent of |𝑄⟩) does not cause
significant error in the quantum solution of |𝜑⟩, suggesting that for
charge distributions varying moderately over sites the proposed non-
uniform mesh scheme is beneficial in obtaining accurate solutions by
the HHL algorithm with fewer register qubits in general.

3. Conclusion

We have presented an implementation study of HHL algorithm to
solve the Poisson equation in semiconductor nanowire p–n junction
Fig. 6. (Top) The decomposition of the capacitance matrix 𝐴. (Bottom) Detail of the quantum gate circuit for the operations 𝑒𝑖𝐴𝑖 𝑡 (𝑖 = 0, 1, 2, 3).
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Fig. 7. Quantum gate circuit to construct the input charge vector |𝑄⟩ in Eq. (2). The
phase 𝜃 (scaled as 𝜃 = 𝜋∕𝑥𝜃) is treated as adjustable parameters, while the phase
𝛿 = −0.05𝜋 is fixed value (see the text).

Fig. 8. (a) Input charge distributions for non-uniform 8-sites model given by Eq. (2)
for various values of 𝑥𝜃 . We assumed that the summation of charges in each of p and
n regions are equal to ±0.25e same as the four site model. (b) Corresponding solutions
|𝜑⟩. In (b) the solid lines and closed symbols are used for the quantum (HHL) results,
while the dashed lines and the open symbols are used for the classical (conventional)
results.

under the Neumann boundary condition that the electric field is zero
at the electrode boundaries. Our proposed model of the quantum gate
circuit to implement the Neumann boundary condition has been found
to successfully reproduce the solution obtained by conventional method
for the four sites model, where the equal separation of the adjacent
eigenvalues of the capacitance matrix 𝐴 plays the important role. This
basic idea has been extended to eight sites model by appropriately
4

designing the non-uniform grid which allows the matrix 𝐴 to have
eigenvalues as equally separated as possible, and we obtained good
agreement between the quantum (HHL) and classical results except for
very localized charge distribution cases. These results suggest that the
proposed non-uniform mesh scheme is beneficial for 𝑁 = 2𝑛 sites model
in general in obtaining accurate solutions by the HHL algorithm with
fewer register qubits if the charge distributions varies moderately over
sites.
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