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A B S T R A C T

This work presents a novel approach of using knowledge transfer to increase the accuracy of artificial neural
network (ANN)-based device compact models, or neural compact models. This is useful when the amount of
data available for training an ANN is limited. By utilizing relatively abundant data of a previous technology
node, physical phenomena that are not evident in the limited data of the target technology node (e.g. gate-
induced drain leakage) are accurately predicted. When meta learning algorithms are used, the accuracy of
the model significantly increases, with relative linear error 10 times lower compared to the case when prior
knowledge is not incorporated. The proposed methodology can be used to model future generation devices
with limited data, utilizing data from well-characterized past technology node devices.
1. Introduction

Analytical compact models are currently the most widely used form
of device models for circuit simulations. Such models are based on
parametric equations derived from device physics and can model the
device behavior of the entire operation regime by performing only
a few representative measurements. However, only physics manually
incorporated in the equations can be modeled with high accuracy.
As more complicated physical phenomena are introduced with device
scaling, the number of fitting parameters have rapidly increased [1].
This results in parameter fitting becoming an increasingly complicated
task, while still not being sufficient to achieve the desired accuracy.

Artificial neural network (ANN)-based device compact models, or
neural compact models, have been introduced for faster device model
generation with higher accuracy based on measured data. Although it
is possible to achieve sufficient accuracy with a large dataset [2], it is
costly to obtain such dataset. To overcome this issue, previous work
directly incorporated in the ANN model the physics that was already
understood [3]. The accuracy improved without increasing the amount
of data but the specific physics was explicitly included in the ANN
model.

Hence we propose using knowledge transfer methods, which lever-
age abundant data of a similar device technology to build an accurate
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neural compact model of the device of interest with a limited amount of
data. The relevant physics is automatically incorporated in the model
without any hand-crafted modeling effort, achieving high accuracy
even with limited data.

2. Knowledge transfer for device modeling

We propose a new modeling framework for tackling the scarcity of
data for the device to be modeled, the target device. We set a similar
environment to parameter extractions for analytical models, where only
a few I–V sweeps are measured for a limited number of channel width
(W), channel length (L), and temperature (T) combinations (W/L/T) of
the target device. Fig. 1 shows the contrast between the available data
for ANN training, and the test data for evaluating the accuracy of the
trained ANN. The amount of the test data is approximately 47 times
greater than that of the available data, consisting of 24 I–V sweeps.

The methodology consists of two parts, each part corresponding to
the equation development and the parameter extraction, respectively,
of the analytical model as in Fig. 2. First, instead of developing an
equation-based model, we pretrain an ANN to learn the device physics
from a source device with a large dataset available, equivalent to the
union of two datasets in Fig. 1 for each W/L/T. The model parameter
vailable online 14 September 2022
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Fig. 1. Bias domain for each W/L/T of the target device of (a) available data for
training and (b) test data.

Fig. 2. Comparison of analytical compact modeling and neural compact modeling using
knowledge transfer methods.

extraction is also replaced with the adaptation of the pretrained ANN
to the limited available data of the target device. While the analytical
model transfers knowledge expressed in equations, the proposed ANN
model transfers knowledge embedded in the source device data. The
whole procedure is called ‘‘knowledge transfer’’. Two knowledge trans-
fer methods are discussed in this work — transfer learning and meta
learning.

2.1. Transfer learning

Transfer learning aims to leverage knowledge of a related task to
enhance the performance of an ANN on a target task [4]. As described
in Fig. 3, we select a W/L/T dataset of the source device, and pretrain
an ANN, a multilayer perceptron (MLP), on that dataset. Assuming that
the I–V characteristics of the source and the target devices share similar
features [4], we adapt the pretrained ANN to a limited W/L/T dataset
of the target device by fine-tuning it. All parameters of the ANN are
updated by back-propagation to minimize the error between the data
and the ANN predictions. The training time for fine-tuning is much
shorter than that of pretraining.

2.2. Meta learning

Meta learning focuses on training an ANN to learn to learn over mul-
tiple learning episodes, so that the trained or meta-trained ANN quickly
adapts to unseen limited data with high test-time accuracy [5]. Fig. 4
illustrates the overall procedures. We employ an encoder–decoder ar-
chitecture, where the encoder extracts compressed representations of
W/L/T datasets, and the decoder makes predictions utilizing those
representations. We also use a few more MLPs including the updater,
2

Fig. 3. Illustration of two processes of transfer learning: (a) pretraining and (b)
fine-tuning.

Fig. 4. Detailed description of meta learning processes: (a) meta-training and (b)
adaptation.

to assist the encoder in producing valid representations, by applying
MetaFun techniques [6].

During meta-training, several W/L/T datasets of the source device
are used, and each of them is parted into disjoint ‘‘support set’’ and
‘‘query set’’ [5]. The relation between the bias voltages and the current
in the support set is utilized by the updater to improve the repre-
sentation (transistor symbol), and that helps the decoder make valid
predictions on the query set. The red and blue arrows indicate each
process, respectively, in Fig. 4(a). By repeating the above processes on
diverse W/L/T datasets, the ANN learns how to quickly adapt to each
support set, so that it produces accurate predictions on unseen query
set.

Consequently, for a target device similar to the source device, the
meta-trained ANN quickly adapts to a limited available dataset, or
support set, for any W/L/T of the target device, by leveraging the broad
knowledge of the source device. On a large test dataset, or query set, the
ANN instantiates accurate predictions without fine-tuning, as depicted
in Fig. 4(b).

3. Experiments

To test the proposed framework, data generated from SPICE sim-
ulation of 45 nm and 32 nm technology node nMOSFET compact
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Fig. 5. ID−VGS ANN predictions (lines), training data (triangles), and test data (circles)
of (a) the randomly initialized ANN and (b) the fine-tuned ANN.

Fig. 6. ID−VGS and first, second derivative of ID−VGS ANN predictions (lines), training
data (triangles), and test data (circles) of the randomly initialized ANN [(a), (c) and
(e), respectively] and of the meta-trained ANN [(b), (d) and (f) respectively].

models [7] are used as source and target device data, respectively. We
validate our methodology by comparing it to the case where an ANN is
randomly initialized and is trained only on the limited available data
of the target device.

First, we apply transfer learning to an ANN and compare its test
result with that of a randomly initialized ANN. On our target available
data (see Fig. 1(a)), only 6 ID −VGS sweeps are provided. In Fig. 5, we
see that such limited data for training a randomly initialized ANN are
not enough to accurately model gate-induced drain leakage (GIDL) cur-
rents. In contrast, the ANN with transfer learning successfully predicts
GIDL currents for all VDS and VBS considered, by using learned physical
knowledge from pretraining stage.

Next, we apply meta learning and compare the predicted I–V char-
acteristics and their higher order derivatives given by the meta-trained
ANN and the randomly initialized ANN in Fig. 6. The meta-trained
ANN smoothly and accurately predicts the I–V characteristics up to two
differentiations without any training on their derivatives as in [8], by
effectively utilizing the learned curve characteristics.

Table 1 compares computational costs and test errors for all three
ANN training methods. During pretraining, one W/L/T dataset of the
source device is used for transfer learning, and 240 such datasets are
used for meta learning with longer pretraining time. For adaptation to
the target device data, 54 W/L/T datasets are used for all methods.
3

Table 1
Knowledge Transferred ANN vs. Randomly Initialized ANN.

Random
initialization

Transfer
learning

Meta
learning

Pretraining time N/A 646 s 17 h
Adaptation time (per W/L/T) 538 s 186 s 1 s
Relative linear error (%) 22.9 4.3 2.3
Relative log error (%) 1.56 0.40 0.11

Fig. 7. Domain of W/L/T of 108 target datasets used for testing ANN models for
matching the electrical parameters. (a) Domain of W, L for temperature 𝑇 = 25, 125
(◦𝐶). (b) Domain of W, L for temperature 𝑇 = 0, 50, 75, 100 (◦𝐶).

The meta-trained ANN not only requires the shortest adaptation time
but also shows the lowest average relative linear and log errors, which
are almost 10 times lower than in the results of the randomly initialized
ANN.

Finally, we evaluate the prediction accuracy of electrical parame-
ters, such as channel current at low and high drain biases (IDLIN and
IDSAT, respectively), threshold voltage (VTH), and GIDL current. The
available data for each W/L/T target dataset are reduced by nearly 36
percent compared to Fig. 1(a), since data near the electrical parameters
are excluded. A total of 108 W/L/T datasets, including minimum and
maximum values of W/L/T of the target device, is used for testing, as
denoted in Fig. 7.

Fig. 8 shows the IDLIN and IDSAT relative linear errors, VTH differ-
ences, and GIDL current log differences between the test data and the
predicted data using random initialization, transfer learning, and meta
learning. The result confirms that the meta-trained ANN captures the
most important features of the I–V characteristic for any W/L/T of the
target device in a much more stable and accurate way than the ran-
domly initialized ANN. The fine-tuned ANN shows good performances,
but the variance of the observed errors tends to be higher than that of
the meta-trained ANN, since its performance varies depending on the
similarity between the source and the target datasets.

4. Conclusion

We have developed a novel framework for neural compact model-
ing by applying advanced knowledge transfer methods. The resulting
model learns the device physics underlying widely available device data
and uses that knowledge to predict physically consistent I–V character-
istics for any W/L/T of a target device with excellent accuracy, even if
the available data of that device are limited.
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Fig. 8. Comparison of relative linear errors for fitting (a) IDLIN and (b) IDSAT, (c) VTH
differences, and (d) log errors for fitting GIDL current by ANN predictions for three
methods.
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