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Abstract—The efficiency of converting waste heat to 

electricity requires a large value of the thermoelectric figure of 

merit (ZT). This can be achieved by patterning bulk material 

into nanostructures like nanowires (NWs). Further 

improvement results from an increased surface roughness (SR) 

of such NWs [1]. In this work, Si NWs with stacking faults (SFs) 

are studied. It is shown that SFs can significantly reduce the 

lattice thermal conductivity as compared to ideal NWs [2]. A 

recent derivation of the phonon relaxation time for SF scattering 

[3] is adapted to the electronic case. It turns out that in most 

cases the thermoelectric power factor (PF) decreases to a lesser 

extent than the thermal conductivity. This can double ZT 

provided that SR scattering of electrons is negligible. 
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I. INTRODUCTION 
It has been shown experimentally that the presence of SFs 

strongly increases the ZT value of InAs NWs with a diameter 
of 20ௗnm [4]. To the best of our knowledge, such experiments 
have not been conducted yet with Si NWs, where SFs arise as 
the interfaces between alternating regions having either 
diamond (DM) or wurtzite (WZ) structure (see Fig. 1). For the 
first time, the simulation of such a Si NW with 70 nm in 
diameter will be presented. 

II. THEORY AND APPROACH  
First-principle calculations based on projector augmented-

wave (PAW) pseudopotentials with hybrid functional of 
Heyd, Scuseria, and Ernzerhof (HSE06) [5] as implemented 
in the Vienna ab initio simulation package (VASP) were 
performed [6,7]. The electronic band structures are calculated 
for the cubic unit cells of DM oriented in ۄ100ۃ and ۄ111ۃ 
direction, respectively, and WZ oriented in ۄ0001ۃ direction 
along the x-axis. These band structures are the input for our 
in-house linearized Boltzmann transport equation (BTE) 
solver. 

A. Transport Coefficients from BTE 
The theoretical background of the BTE will not be outlined 
here as it can be found elsewhere, e.g. in Ref. [8]. The 
transport properties of real materials can be explained by this 
theory. In the presence of an electrical field (E) and a 
temperature gradient (׏T), the electrical current density J and 
the heat current (or energy flux density) JQ can be written, 
respectively, as 

( )TE= − ∇J σ S ,                            (1) 

T TQ E ∇= −σS KJ ,                           (2) 

where σ, S, and K are rank-two tensors which reduce to scalars 
for isotropic media. 

The electronic part of the thermal conductivity is defined 
as (minus) the heat current per unit of temperature gradient in 
open-circuit conditions (i.e., J = 0). It is given by 

 2Te −=k K σS .                              (3) 

By solving the BTE under relaxation time (RT) 
approximation and the assumption that the system is in steady 
state with a distribution function slightly different from its 
equilibrium form, the transport coefficients read 
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where i and j are Cartesian indices, �f / �E is the derivative of 
the Fermi-Dirac distribution function with respect to the 
energy (E), EF is the Fermi level or the electro-chemical 
potential, σ, S, and ke are the electrical conductivity, Seebeck 
coefficient, and electron thermal conductivity, respectively. 
The transport distribution function (TDF) is defined as 
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where the summation is over all bands n and the entire 
Brillouin zone (BZ). vi is the i-component of the group 

 
Figure 1: Left panel: Schematic view of the two (three) smallest 
cubic unit cells of DM (WZ) in (ۄ0001ۃ) ۄ111ۃ direction. Right 
panel: The corresponding electronic band structures calculated 
by density functional theory (DFT) and the energy difference 
between DM and WZ structures. A k-point sampling of 
"401×101×101" is used.  
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velocity at (n, k). The electron lifetime Ĳn,k is a function of both 
n and k. The electron and hole density are given by 
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respectively, where DOS is the electron density of states, EC 
the conduction band edge, and EV the valence band edge. 
Finally, the electron and hole mobilities are, respectively, 
defined as 

/e en eµ σ= ,  / hh n eµ σ= .                     (10) 

The electron scattering rate is obtained by summing the 
inverse partial RTs of all involved scattering processes. 

B. Scattering of Electrons at Stacking Faults 
The SF scattering model developed for phonons in Ref. [3] 

is modified for electron scattering at SFs. The only difference 
is that the phonon wave function is replaced by the electron 
wave function (q replaced by k). Only an exponential 
distribution of SFs is considered here. In this case the 
relaxation time takes the form 
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The average distance between SFs (lsf) along the NW is 
assumed to be 2.5ௗnm. The computation of the electronic 
relaxation time for SF scattering requires the knowledge of the 
energy difference between DM in ۄ111ۃ direction and WZ in 
 direction (see Fig. 1). The number of atoms must be ۄ0001ۃ
the same in both lattice configurations, hence two (three) 
smallest unit cells of DM (WZ) are used. For a dense k-point 
sampling in the BTE calculation, the first Brillouin zone is 
discretized by 401 points in x-direction and 101 points in the 
other directions.  

C. Electron-phonon Scattering on Electrons 
Apart from SF scattering, the electronic relaxation time is 

determined by electron-phonon scattering as shown in Fig. 2. 
Here, the semi-empirical treatment is used to derive the 
electron-phonon coupling matrix. The relaxation time 
approximation from the linearized BTE is defined by the 
relation 

( )

( ) ( )( )[
( ) ( )( )]

21
,

2

1

mn

BZ

p

m n

m n

mp

p p

p p

n

m

m

n f E E

n E

g

f E

dπ
τ

δ ω
δ ω

+

+

+

+

=
Ω

× +

+ −

+ −

+ − −

¦³=

=

=
q k q k q

q k q k q

k

k q

k q

q
k q

.  (12) 

The right-hand side presents the modification of the 
distribution function arising from electron-phonon scattering 
in and out of the state |݊ۧ࢑ , by emission or absorption of 
phonons with frequency Ȧqp, and branch index p. nqp is the 
Bose-Einstein distribution function. The matrix elements 
gmnp(k, q) are the probability amplitude for scattering from an 
initial electronic state |݊ۧ࢑  into a final state |݊࢑ +  by aۧࢗ
phonon |ۧ݌ࢗ. 

The coupling of carriers with the lattice vibrations is 
described by the deformation potential interaction. The 
deformation potential involves only the short-range 
interaction between electrons and long-wavelength phonons. 
All deformation potential parameters for Si can be found in 
Ref. [9]. The electron-phonon coupling constants are given by 
the expressions 
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where DA is the acoustic (AC) deformation potential, DO is the 
constant zero-order optical (OP) deformation potential and ȡ 
is the mass density of the material. By inserting Eq. (13) into 
Eq. (12) with the use of a simple parabolic band model, the 
rates for scattering at acoustic and optical phonons, 
respectively, read 
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where vAC is the acoustic phonon group velocity (sound 
velocity) and meff is the density-of-states effective mass which 
is equal to  (mt

2ml)1/3 (mt is the transverse effective mass and 
ml is the longitudinal effective mass). 

 
Figure 2: Energetic scattering rate of electrons from different 
scattering mechanisms. Top panel: The contributions of the 
electron-phonon (e-ph) scattering from acoustic phonon (AC) 
and intervalley (IV) scatterings at room temperature. Bottom 
panel: e-ph scattering and SF scattering with lsf equal to 2.5 nm, 
at different temperatures. The energy zero is the conduction 
band edge (Ec). 

232



The equi-energy surfaces of Si have several valleys. 
Therefore, scattering between valleys (intervalley scattering) 
can occur. For Si, the valleys are equivalent near the zone 
boundary along ۄ100ۃ directions. There are two types of 
intervalley scattering. (i) The g-type processes scatter a carrier 
from a valley to the opposite one. (ii) The f-type processes 
scatter a carrier into one of the remaining valleys. The 
scattering rate of intervalley scattering can be written as 
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where Dif is the intervalley deformation potential which 
characterizes the strength of the scattering from the initial 
valley i to the final valley f, Zf is the number of final valleys, 
¨Eif is the difference between the bottom of the conduction 
bands in the final and the initial valleys. 

SR scattering and all kinds of Coulomb scattering are 
ignored. The electron density is treated as a parameter. The 
possible impact of SR scattering would depend on the surface 
field that emerges as the electrostatic consequence of doping, 
interface charges, and fixed oxide charges. A doping level of 
~1×1020ௗcm-3 as chosen in Ref. [10] generates flat-band 
conditions and makes SR scattering a second-order effect in 
bulk-like NWs. 

III. RESULTS 
Near the conduction band edge, the energetic rate of SF 

scattering strongly dominates over the rate of electron-phonon 
scattering (Fig. 2). The latter becomes stronger when the 
energy increases. The figure of merit ZT is the product of PF 
and average temperature between two contacts, divided by the 
sum of lattice and electron thermal conductivities. The PF is 
given by the square of the Seebeck coefficient (S) multiplied 
by the electrical conductivity. As shown in Fig. 3(a), the 
calculated S of the DM structure perfectly fits the 
experimental data. As |S| is the conductance-averaged energy 
difference |Eௗ-ௗEF|, it decreases with increasing density. The 
electron mobility of the DM structure oriented in ۄ100ۃ-
direction matches the measured bulk electron mobility for 
negligible doping concentration (< 1012 cm-3) as can be seen 
in Fig. 3(b).  However, the mobility of the DM structure 
oriented in ۄ111ۃ-direction has smaller values as function of 
both temperature and electron concentration (see Fig. 3(c)). 
The structure with SFs exhibits a clear reduction of the 
electron mobility compared to the two DM structures. 

Calculations of the lattice thermal conductivity of bulk Si 
and Si NWs are reproduced from Ref. [2] in Fig. 4. As in the 
case of InAs NWs [3], comparable reductions of the thermal 
conductivity of Si NWs can be obtained with SFs instead of 
SR. Figure 4 also presents the electronic part of the thermal 
conductivity as function of electron density. Its values 
increase with the electron concentration. When SFs are 
introduced into the material, the electron thermal conductivity 
is reduced significantly from the perfect crystal. Figure 5 
shows the PF as function of electron density at 300 K and 500 
K. SFs lower the PF significantly over the entire concentration 
range. The percentage reduction of the PF of Si NWs as the 
consequence of SFs reduces when the temperature increases. 
The ZT as function of electron concentration is presented in 
Fig. 5. As expected, engineering NWs increases the ZT value 

 
Figure 3: (a) Absolute value of Seebeck coefficient as function of electron concentration (n) at room temperature. The blue (red) 
line corresponds to a cubic unit cell of DM oriented in ۄ100ۃ	(ۄ111ۃ)	���������,	������������. Symbols represent the experimental 
data of Ref. [11]. (b) Electron mobility as function of temperature at an electron concentration of 1012 cm-3. Symbols are 
experimental data from Ref. [12]. (c) Electron mobility as function of electron concentration at 300 K. 

 
Figure 4: Top panel: Lattice thermal conductivity as function of 
temperature. Symbols denote the measurements from Refs. 
[1,13-14]. Lines are simulated thermal conductivities. The 
dotted line is for the bulk case, whereas solid lines are for the 
ideal NW case. The dash-dotted line is for a NW with SFs. Blue 
(green, red) lines are for 120 nm (70 nm, 56 nm) diameter, 
respectively. Bottom panel: Electron thermal conductivity as 
function of electron density with temperatures equal to 300 K 
and 500 K. 
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compared to the bulk case. The benefit of SFs to the 
improvement of ZT is clearly observed in the high-density 
range and at high temperatures. A doubling of the ZT value 
compared to that of an ideal NW could be achievable.  

IV. CONCLUSION 
An in-house linearized BTE solver was used to derive the 

ZT of bulk Si, ideal Si NWs, and Si NWs with SFs based on 
DFT band structure calculations for electrons and phonons. 
NWs with SFs have a lower electron mobility and a smaller 
PF. At high electron concentration, this suppression is reduced 
by the increasing role of electron-phonon scattering, whereas 
the lattice thermal conductivity remains the same. This leads 
to an improved ZT. Our simulations show the possibility of 
engineering the ZT of Si NWs by the introduction of SFs. This 
could encourage experimentalists to explore the benefit of 
such NWs for thermoelectric converters. 
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Figure 5: Top panel: Power factor as function of electron 
density with temperatures equal to 300 K and 500 K. Bottom 
panel: Thermoelectric figure of merit as function of electron 
density. The NW diameter is 70 nm. 
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